版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,若當(dāng)時,的圖象與直線恰有兩個公共點,則的取值范圍為()A. B. C. D.2.直線,,的斜率分別為,,,如圖所示,則()A. B.C. D.3.在正項等比數(shù)列中,,則()A. B. C. D.4.某幾何體的三視圖如圖所示,它的體積為()A.12π B.45π C.57π D.81π5.在等差數(shù)列中,若,則()A.10 B.15 C.20 D.256.已知數(shù)列滿足,則()A.10 B.20 C.100 D.2007.在△ABC中,角A,B,C所對的邊分別為a,b,c,若a﹣b=ccosB﹣ccosA,則△ABC的形狀為()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰三角形或直角三角形8.設(shè)點是棱長為的正方體的棱的中點,點在面所在的平面內(nèi),若平面分別與平面和平面所成的銳二面角相等,則點到點的最短距離是()A. B. C. D.9.運行如圖程序,若輸入的是,則輸出的結(jié)果是()A.3 B.9 C.0 D.10.已知兩個球的表面積之比為,則這兩個球的體積之比為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.方程的解=__________.12.函數(shù)的最大值為.13.已知向量,滿足,與的夾角為,則在上的投影是;14.在正方體中,是棱的中點,則異面直線與所成角的余弦值為__________.15.已知,若數(shù)列滿足,,則等于________16.在等腰中,為底邊的中點,為的中點,直線與邊交于點,若,則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓經(jīng)過兩點,且圓心在軸上.(1)求圓的方程;(2)若直線,且截軸所得縱截距為5,求直線截圓所得線段的長度.18.已知,(1)求;(2)求;(3)求19.已知函數(shù)(1)若關(guān)于的不等式的解集為,求的值;(2)若對任意恒成立,求的取值范圍.20.在等差數(shù)列中,,(1)求的通項公式;(2)求的前n項和21.如圖所示,已知三棱錐的側(cè)棱長都為1,底面ABC是邊長為的正三角形.(1)求三棱錐的表面積;(2)求三棱錐的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)二倍角和輔助角公式化簡可得,根據(jù)平移變換原則可得;當(dāng)時,;利用正弦函數(shù)的圖象可知若的圖象與直線恰有兩個公共點可得,解不等式求得結(jié)果.【詳解】由題意得:由圖象平移可知:當(dāng)時,,,,,又的圖象與直線恰有兩個公共點,解得:本題正確選項:【點睛】本題考查根據(jù)交點個數(shù)求解角的范圍的問題,涉及到利用二倍角和輔助角公式化簡三角函數(shù)、三角函數(shù)圖象平移變換原則的應(yīng)用等知識;關(guān)鍵是能夠利用正弦函數(shù)的圖象,采用數(shù)形結(jié)合的方式確定角所處的范圍.2、A【解析】
根據(jù)題意可得出直線,,的傾斜角滿足,由傾斜角與斜率的關(guān)系得出結(jié)果.【詳解】解:設(shè)三條直線的傾斜角為,根據(jù)三條直線的圖形可得,因為,當(dāng)時,,當(dāng)時,單調(diào)遞增,且,故,即故選A.【點睛】本題考查了直線的傾斜角與斜率的關(guān)系,解題的關(guān)鍵是熟悉正切函數(shù)的單調(diào)性.3、D【解析】
結(jié)合對數(shù)的運算,得到,即可求解.【詳解】由題意,在正項等比數(shù)列中,,則.故選:D.【點睛】本題主要考查了等比數(shù)列的性質(zhì),以及對數(shù)的運算求值,其中解答中熟記等比數(shù)列的性質(zhì),合理應(yīng)用對數(shù)的運算求解是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.4、C【解析】由三視圖可知,此組合體上部是一個母線長為5,底面圓半徑是3的圓錐,下部是一個高為5,底面半徑是3的圓柱故它的體積是5×π×32+π×32×=57π故選C5、C【解析】
設(shè)等差數(shù)列的公差為,得到,又由,代入即可求解,得到答案.【詳解】由題意,設(shè)等差數(shù)列的公差為,則,又由,故選C.【點睛】本題主要考查了等差數(shù)列的通項公式的應(yīng)用,其中解答中熟記等差數(shù)列的通項公式,準(zhǔn)確計算是解答的關(guān)鍵,著重考查了計算與求解能力,屬于基礎(chǔ)題,.6、C【解析】
由題可得數(shù)列是以為首相,為公差的等差數(shù)列,求出數(shù)列的通項公式,進而求出【詳解】因為,所以數(shù)列是以為首項,為公差的等差數(shù)列,所以,則【點睛】本題考查由遞推公式證明數(shù)列是等差數(shù)列以及等差數(shù)列的通項公式,屬于一般題.7、D【解析】
用正弦定理化邊為角,再由誘導(dǎo)公式和兩角和的正弦公式化簡變形可得.【詳解】∵a﹣b=ccosB﹣ccosA,∴,∴,∴,∴或,∴或,故選:D.【點睛】本題考查正弦定理,考查三角形形狀的判斷.解題關(guān)鍵是誘導(dǎo)公式的應(yīng)用.8、B【解析】
以為原點,為軸為軸為軸,建立空間直角坐標(biāo)系,計算三個平面的法向量,根據(jù)夾角相等得到關(guān)系式:,再利用點到直線的距離公式得到答案.【詳解】`以為原點,為軸為軸為軸,建立空間直角坐標(biāo)系.則易知:平面的法向量為平面的法向量為設(shè)平面的法向量為:則,取平面分別與平面和平面所成的銳二面角相等或看作平面的兩條平行直線,到的距離.根據(jù)點到直線的距離公式得,點到點的最短距離都是:故答案為B【點睛】本題考查了空間直角坐標(biāo)系,二面角,最短距離,意在考查學(xué)生的計算能力和空間想象能力.9、B【解析】分析:首先根據(jù)框圖中的條件,判斷-2與1的大小,從而確定出代入哪個解析式,從而求得最后的結(jié)果,得到輸出的值.詳解:首先判斷成立,代入中,得到,從而輸出的結(jié)果為9,故選B.點睛:該題考查的是有關(guān)程序框圖的問題,在解題的過程中,需要注意的是要明確自變量的范圍,對應(yīng)的函數(shù)解析式應(yīng)該代入哪個,從而求得最后的結(jié)果,屬于簡單題目.10、D【解析】
根據(jù)兩個球的表面積之比求出半徑之比,利用半徑之比求出球的體積比.【詳解】由題知,則.故選:D.【點睛】本題主要考查了球體的表面積公式和體積公式,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、-1【解析】分析:由對數(shù)方程,轉(zhuǎn)化為指數(shù)方程,解方程即可.詳解:由log2(1﹣2x)=﹣1可得(1﹣2x)=,解方程可求可得,x=﹣1故答案為:﹣1點睛:本題主要考查了對數(shù)方程的求解,解題中要善于利用對數(shù)與指數(shù)的轉(zhuǎn)化,屬于基礎(chǔ)題.12、【解析】略13、1【解析】考查向量的投影定義,在上的投影等于的模乘以兩向量夾角的余弦值14、【解析】
假設(shè)正方體棱長,根據(jù)//,得到異面直線與所成角,計算,可得結(jié)果.【詳解】假設(shè)正方體棱長為1,因為//,所以異面直線與所成角即與所成角則角為如圖,所以故答案為:【點睛】本題考查異面直線所成的角,屬基礎(chǔ)題.15、【解析】
根據(jù)首項、遞推公式,結(jié)合函數(shù)的解析式,求出的值,可以發(fā)現(xiàn)數(shù)列是周期數(shù)列,求出周期,利用數(shù)列的周期性可以求出的值.【詳解】,所以數(shù)列是以5為周期的數(shù)列,因為20能被5整除,所以.【點睛】本題考查了數(shù)列的周期性,考查了數(shù)學(xué)運算能力.16、;【解析】
題中已知等腰中,為底邊的中點,不妨于為軸,垂直平分線為軸建立直角坐標(biāo)系,這樣,我們能求出點坐標(biāo),根據(jù)直線與求出交點,求向量的數(shù)量積即可.【詳解】如上圖,建立直角坐標(biāo)系,我們可以得出直線,聯(lián)立方程求出,,即填寫【點睛】本題中因為已知底邊及高的長度,所有我們建立直角坐標(biāo)系,求出相應(yīng)點坐標(biāo),而作為F點的坐標(biāo)我們可以通過直線交點求出,把向量數(shù)量積通過向量坐標(biāo)運算來的更加直觀.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)設(shè)圓心的坐標(biāo)為,利用求出的值,可確定圓心坐標(biāo),并計算出半徑長,然后利用標(biāo)準(zhǔn)方程可寫出圓的方程;(2)由,得出直線的斜率與直線的斜率相等,可得出直線的斜率,再由截軸所得縱截距為,可得出直線的方程,計算圓心到直線的距離,則.【詳解】(1)設(shè)圓心,則,則所以圓方程:.(2)由于,且,則,則圓心到直線的距離為:.由于,【點睛】本題考查圓的方程的求解以及直線截圓所得弦長的計算,再解直線與圓相關(guān)的問題時,可充分利用圓的幾何性質(zhì),利用幾何法來處理,問題的核心在于計算圓心到直線的距離的計算,在計算弦長時,也可以利用弦長公式來計算。18、(1);(2);(3)【解析】
利用正弦的二倍角公式,余弦和正切的兩角和公式計算即可得到答案.【詳解】因為,,所以.(1);(2);(3)【點睛】本題考查正弦的二倍角公式,余弦和正切的兩角和公式的應(yīng)用,屬于簡單題.19、(1);(2)【解析】
(1)不等式可化為,而解集為,可利用韋達定理或直接代入即可得到答案;(2)法一:討論和時,分離參數(shù)利用均值不等式即可得到取值范圍;法二:利用二次函數(shù)在上大于等于0恒成立,即可得到取值范圍.【詳解】(1)法一:不等式可化為,其解集為,由根與系數(shù)的關(guān)系可知,解得,經(jīng)檢驗時滿足題意.法二:由題意知,原不等式所對應(yīng)的方程的兩個實數(shù)根為和4,將(或4)代入方程計算可得,經(jīng)檢驗時滿足題意.(2)法一:由題意可知恒成立,①若,則恒成立,符合題意。②若,則恒成立,而,當(dāng)且僅當(dāng)時取等號,所以,即.故實數(shù)的取值范圍為.法二:二次函數(shù)的對稱軸為.①若,即,函數(shù)在上單調(diào)遞增,恒成立,故;②若,即,此時在上單調(diào)遞減,在上單調(diào)遞增,由得.故;③若,即,此時函數(shù)在上單調(diào)遞減,由得,與矛盾,故不存在.綜上所述,實數(shù)的取值范圍為.【點睛】本題主要考查一元二次不等式的性質(zhì),不等式恒成立中含參問題,意在考查學(xué)生的分析能力,計算能力及轉(zhuǎn)化能力,難度較大.20、(1);(2)【解析】試題分析:(1)根據(jù)已知數(shù)列為等差數(shù)列,結(jié)合數(shù)列的性質(zhì)可知:前3項和,所以,又因為,所以公差,再根據(jù)等差數(shù)列通項公式,可以求得.本問考查等差數(shù)列的通項公式及等差數(shù)列的性質(zhì),屬于對基礎(chǔ)知識的考查,為容易題,要求學(xué)生必須掌握.(2)由于為等差數(shù)列,所以可以根據(jù)重要結(jié)論得知:數(shù)列為等比數(shù)列,可以根據(jù)等比數(shù)列的定義進行證明,即,符合等比數(shù)列定義,因此數(shù)列是等比數(shù)列,首項為,公比為2,所以問題轉(zhuǎn)化為求以4為首項,2為公比的等比數(shù)列的前n項和,根據(jù)公式有.本問考查等比數(shù)列定義及前n項和公式.屬于對基礎(chǔ)知識的考查.試題解析:(1)又(2)由(1)知得:是以4為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44569.1-2024土工合成材料內(nèi)部節(jié)點強度的測定第1部分:土工格室
- 橋梁建筑工程合同書
- 來料加工終止協(xié)議書模板
- 工地安全監(jiān)控系統(tǒng)安裝合同
- 工程建設(shè)招標(biāo)投標(biāo)合同(投標(biāo)保函樣本)
- 代理合同參考樣式
- 2024年度股票托管委托協(xié)議書
- 地質(zhì)勘探合同
- 獨家代理合作協(xié)議范例
- 碎石運輸合同協(xié)議2024年
- 物業(yè)公司百日安全活動方案
- 家電以舊換新風(fēng)險識別與應(yīng)對措施
- 橋梁結(jié)構(gòu)健康監(jiān)測系統(tǒng)實施和驗收規(guī)范
- 兒童海洋科普知識講座
- 中國華電在線測評題
- 蘇州市高新區(qū)2022-2023學(xué)年八年級上學(xué)期期中英語試題(含答案和解析)
- 退休項目經(jīng)理返聘合同-工程管理
- 工廠安全教育知識
- 造價崗位轉(zhuǎn)正述職報告
- 屋面瓦及檁條拆除安全專項方案
- 提高感染性休克集束化治療完成率工作方案
評論
0/150
提交評論