版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,位于處的海面觀測站獲悉,在其正東方向相距40海里的處有一艘漁船遇險,并在原地等待營救.在處南偏西且相距20海里的處有一救援船,其速度為海里小時,則該船到求助處的時間為()分鐘.A.24 B.36 C.48 D.602.在中,分別為角的對邊,若,且,則邊=()A. B. C. D.3.如果在一次實驗中,測得x,y的四組數(shù)值分別是A1,3,B2,3.8,C3,5.2,D4,6,則A.y=x+1.9 B.C.y=0.95x+1.04 D.4.正六邊形的邊長為,以頂點為起點,其他頂點為終點的向量分別為;以頂點為起點,其他頂點為終點的向量分別為.若分別為的最小值、最大值,其中,則下列對的描述正確的是()A. B. C. D.5.設(shè),若3是與的等比中項,則的最小值為().A. B. C. D.6.已知點,則向量()A. B. C. D.7.同時拋擲三枚硬幣,則拋擲一次時出現(xiàn)兩枚正面一枚反面的概率為()A. B. C. D.8.已知向量,滿足,,,則與的夾角為()A. B. C. D.9.已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1,l2,直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為A.16 B.14 C.12 D.1010.已知,則的值為()A. B. C. D.2二、填空題:本大題共6小題,每小題5分,共30分。11.已知中,,且,則面積的最大值為__________.12.函數(shù)的定義域為_____________.13.已知圓是圓上的一條動直徑,點是直線上的動點,則的最小值是____.14.P是棱長為4的正方體的棱的中點,沿正方體表面從點A到點P的最短路程是_______.15.在數(shù)列中,已知,,記為數(shù)列的前項和,則_________.16.在三棱錐中,平面,是邊長為2的正三角形,,則三棱錐的外接球的表面積為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓(1)求圓關(guān)于直線對稱的圓的標(biāo)準(zhǔn)方程;(2)過點的直線被圓截得的弦長為8,求直線的方程;(3)當(dāng)取何值時,直線與圓相交的弦長最短,并求出最短弦長.18.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知,,.(1)求邊c的值;(2)求的面積19.已知等差數(shù)列中,,,數(shù)列中,,其前項和滿足:.(1)求數(shù)列、的通項公式;(2)設(shè),求數(shù)列的前項和.20.在等比數(shù)列中,.(1)求的通項公式;(2)若,求數(shù)列的前項和.21.已知是圓的直徑,垂直圓所在的平面,是圓上任一點.求證:平面⊥平面.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
利用余弦定理求出的長度,然后根據(jù)速度、時間、路程之間的關(guān)系求出時間即可.【詳解】由題意可知:,運用余弦定理可知:該船到求助處的時間,故本題選A.【點睛】本題考查了余弦定理的應(yīng)用,考查了數(shù)學(xué)運算能力.2、B【解析】
由利用正弦定理化簡,再利用余弦定理表示出cosA,整理化簡得a2b2+c2,與,聯(lián)立即可求出b的值.【詳解】由sinB=8cosAsinC,利用正弦定理化簡得:b=8c?cosA,將cosA代入得:b=8c?,整理得:a2b2+c2,即a2﹣c2b2,∵a2﹣c2=3b,∴b2=3b,解得:b=1或b=0(舍去),則b=1.故選B【點睛】此題考查了正弦、余弦定理,熟練掌握定理,準(zhǔn)確計算是解本題的關(guān)鍵,是中檔題3、B【解析】
求出樣本數(shù)據(jù)的中心(2.5,4.5),依次代入選項中的回歸方程.【詳解】∵x∴樣本數(shù)據(jù)的中心為(2.5,4.5),將它依次代四個選項,只有B符合,∴y與x之間的回歸直線方程是y=1.04x+1.9【點睛】本題的考點是回歸直線經(jīng)過樣本點的中心,而不是考查利用最小二乘法求回歸直線方程.4、A【解析】
利用向量的數(shù)量積公式,可知只有,其余數(shù)量積均小于等于0,從而得到結(jié)論.【詳解】由題意,以頂點A為起點,其他頂點為終點的向量分別為,以頂點D為起點,其他頂點為終點的向量分別為,則利用向量的數(shù)量積公式,可知只有,其余數(shù)量積均小于等于0,又因為分別為的最小值、最大值,所以,故選A.【點睛】本題主要考查了向量的數(shù)量積運算,其中解答中熟記向量的數(shù)量積的運算公式,分析出向量數(shù)量積的正負是關(guān)鍵,著重考查了分析解決問題的能力,屬于中檔試題.5、C【解析】
由3是與的等比中項,可得,再利用不等式知識可得的最小值.【詳解】解:3是與的等比中項,,,=,故選C.【點睛】本題考查了指數(shù)式和對數(shù)式的互化,及均值不等式求最值的運用,考查了計算變通能力.6、D【解析】
利用終點的坐標(biāo)減去起點的坐標(biāo),即可得到向量的坐標(biāo).【詳解】∵點,,∴向量,,.故選:D.【點睛】本題考查向量的坐標(biāo)表示,考查運算求解能力,屬于基礎(chǔ)題.7、B【解析】
根據(jù)二項分布的概率公式求解.【詳解】每枚硬幣正面向上的概率都等于,故恰好有兩枚正面向上的概率為:.故選B.【點睛】本題考查二項分布.本題也可根據(jù)古典概型概率計算公式求解.8、B【解析】
將變形解出夾角的余弦值,從而求出與的夾角.【詳解】由得,即又因為,所以,所以,故選B.【點睛】本題考查向量的夾角,屬于簡單題.9、A【解析】設(shè),直線的方程為,聯(lián)立方程,得,∴,同理直線與拋物線的交點滿足,由拋物線定義可知,當(dāng)且僅當(dāng)(或)時,取等號.點睛:對于拋物線弦長問題,要重點抓住拋物線定義,到定點的距離要想到轉(zhuǎn)化到準(zhǔn)線上,另外,直線與拋物線聯(lián)立,求判別式,利用根與系數(shù)的關(guān)系是通法,需要重點掌握.考查最值問題時要能想到用函數(shù)方法和基本不等式進行解決.此題還可以利用弦長的傾斜角表示,設(shè)直線的傾斜角為,則,則,所以.10、B【解析】
根據(jù)兩角和的正切公式,結(jié)合,可以求出的值,用同角的三角函數(shù)的關(guān)系式中的平方和關(guān)系把等式變成分子、分母的齊次式形式,最后代入求值即可.【詳解】..故選:B【點睛】本題考查了同角的三角函數(shù)關(guān)系式的應(yīng)用,考查了二倍角的正弦公式,考查了兩角和的正切公式,考查了數(shù)學(xué)運算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先利用正弦定理求出c=2,分析得到當(dāng)點在的垂直平分線上時,邊上的高最大,的面積最大,利用余弦定理求出,最后求面積的最大值.【詳解】由可得,由正弦定理,得,故,當(dāng)點在的垂直平分線上時,邊上的高最大,的面積最大,此時.由余弦定理知,,即,故面積的最大值為.故答案為【點睛】本題主要考查正弦定理余弦定理解三角形,考查三角形面積的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于中檔題.12、【解析】函數(shù)的定義域為故答案為13、【解析】
由題意得,==﹣=,即可求的最小值.【詳解】圓,得,則圓心C(1,2),半徑R=,如圖可得:==﹣=,點是直線上,所以=()2=,∴的最小值是=.故答案為:.【點睛】本題考查了向量的數(shù)量積、轉(zhuǎn)化和數(shù)形結(jié)合的思想,點到直線的距離,屬于中檔題.14、【解析】
從圖形可以看出圖形的展開方式有二,一是以底棱BC,CD為軸,可以看到此兩種方式是對稱的,所得結(jié)果一樣,另外一種是以側(cè)棱為軸展開,即以BB1,DD1為軸展開,此兩種方式對稱,求得結(jié)果一樣,故解題時選擇以BC為軸展開與BB1為軸展開兩種方式驗證即可【詳解】由題意,若以BC為軸展開,則AP兩點連成的線段所在的直角三角形的兩直角邊的長度分別為4,6,故兩點之間的距離是若以BB1為軸展開,則AP兩點連成的線段所在的直角三角形的兩直角邊的長度分別為2,8,故兩點之間的距離是故沿正方體表面從點A到點P的最短路程是cm故答案為【點睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,求解的關(guān)鍵是能夠根據(jù)題意把求幾何體表面上兩點距離問題轉(zhuǎn)移到平面中來求15、【解析】
根據(jù)數(shù)列的遞推公式求出該數(shù)列的前幾項,找出數(shù)列的周期性,從而求出數(shù)列的前項和的值.【詳解】對任意的,,.則,,,,,,所以,.,且,,故答案為:.【點睛】本題考查數(shù)列遞推公式的應(yīng)用,考查數(shù)列周期性的應(yīng)用,解題時要結(jié)合遞推公式求出數(shù)列的前若干項,找出數(shù)列的規(guī)律,考查推理能力和計算能力,屬于中等題.16、【解析】
設(shè)三棱錐的外接球半徑為,利用正弦定理求出的外接圓半徑,再利用公式可計算出外接球半徑,最后利用球體的表面積公式可計算出結(jié)果.【詳解】由正弦定理可得,的外接圓直徑為,,設(shè)三棱錐的外接球半徑為,平面,,因此,三棱錐的外接球表面積為,故答案為.【點睛】本題考查多面體的外接球,考查球體表面積的計算,在求解直棱柱后直棱錐的外接球,若底面外接圓半徑為,高為,可利用公式得出外接球的半徑,解題時要熟悉這些結(jié)論的應(yīng)用.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或;(3)【解析】
(1)設(shè),根據(jù)圓心與關(guān)于直線對稱,列出方程組,求得的值,即可求解;(2)由圓的弦長公式,求得,根據(jù)斜率分類討論,求得直線的斜率,即可求解;(3)由直線,得直線過定點,根據(jù)時,弦長最短,即可求解.【詳解】(1)由題意,圓的圓心,半徑為,設(shè),因為圓心與關(guān)于直線對稱,所以,解得,則,半徑,所以圓標(biāo)準(zhǔn)方程為:(2)設(shè)點到直線距離為,圓的弦長公式,得,解得,①當(dāng)斜率不存在時,直線方程為,滿足題意②當(dāng)斜率存在時,設(shè)直線方程為,則,解得,所以直線的方程為,綜上,直線方程為或(3)由直線,可化為,可得直線過定點,當(dāng)時,弦長最短,又由,可得,此時最短弦長為.【點睛】本題主要考查了圓的對稱圓的求解,以及直線與圓的位置關(guān)系的應(yīng)用,其中解答中熟記直線與圓的弦長公式,合理、準(zhǔn)確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.18、(1)(2)3【解析】
(1)由可得,利用正弦定理可得,即可求解;(2)先利用余弦定理求得,即可求得,再利用三角形面積公式求解即可【詳解】解:(1)因為,所以,即,則(2)由(1),則,所以,所以【點睛】本題考查利用正弦定理邊角互化,考查利用余弦定理求角,考查三角形面積公式的應(yīng)用19、(1)(2)【解析】試題分析:(1)對于求得首項和公差即可求得數(shù)列的通項公式,對于,利用遞推關(guān)系求解數(shù)列的通項公式即可;(2)利用數(shù)列的特點錯位相減求解數(shù)列的前n項和即可.試題解析:(I)①②①-②得,為等比數(shù)列,(II)由兩式相減,得點睛:一般地,如果數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,求數(shù)列{an·bn}的前n項和時,可采用錯位相減法求和,一般是和式兩邊同乘以等比數(shù)列{bn}的公比,然后作差求解.20、(1)(2)【解析】
(1)將已知條
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧中醫(yī)藥大學(xué)杏林學(xué)院《礦山運輸》2023-2024學(xué)年第一學(xué)期期末試卷
- 蘭州職業(yè)技術(shù)學(xué)院《分析化學(xué)及實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西軟件職業(yè)技術(shù)大學(xué)《不動產(chǎn)測繪》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南應(yīng)用技術(shù)學(xué)院《數(shù)據(jù)庫原理與應(yīng)用實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南工學(xué)院《產(chǎn)品開發(fā)與服務(wù)設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 衡水職業(yè)技術(shù)學(xué)院《J》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶資源與環(huán)境保護職業(yè)學(xué)院《大氣科學(xué)概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶交通職業(yè)學(xué)院《計算機輔助實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 仲愷農(nóng)業(yè)工程學(xué)院《虛擬儀器應(yīng)用及項目開發(fā)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江商業(yè)職業(yè)技術(shù)學(xué)院《壓縮機原理與結(jié)構(gòu)》2023-2024學(xué)年第一學(xué)期期末試卷
- ECE-R90-歐盟第3版-中文版(R090r3e-01)
- 2024-2025學(xué)年重慶市北碚區(qū)三上數(shù)學(xué)期末監(jiān)測試題含解析
- 大宗貿(mào)易居間協(xié)議2024年
- 第2課《濟南的冬天》課件-2024-2025學(xué)年統(tǒng)編版語文七年級上冊
- 2024年水利工程高級工程師理論考試題庫(濃縮400題)
- 增強現(xiàn)實技術(shù)在藝術(shù)教育中的應(yīng)用
- TD/T 1060-2021 自然資源分等定級通則(正式版)
- 《創(chuàng)傷失血性休克中國急診專家共識(2023)》解讀
- 倉庫智能化建設(shè)方案
- 海外市場開拓計劃
- 供應(yīng)鏈組織架構(gòu)與職能設(shè)置
評論
0/150
提交評論