版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的部分圖象如圖所示,為了得到的圖象,只需將的圖象A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位2.如圖所示,在正方形ABCD中,E為AB的中點,F(xiàn)為CE的中點,則A. B.C. D.3.實數(shù)滿足,則的取值范圍為()A. B. C. D.4.長方體共頂點的三個相鄰面面積分別為,這個長方體的頂點在同一個球面上,則這個球的表面積為()A. B. C. D.5.已知等差數(shù)列an的前n項和為Sn,若a8=12,S8A.-2 B.2 C.-1 D.16.已知兩個等差數(shù)列,的前項和分別為,,若對任意的正整數(shù),都有,則等于()A.1 B. C. D.7.不等式的解集是:A. B.C. D.8.數(shù)列1,3,6,10,…的一個通項公式是()A. B.C. D.9.若實數(shù)a、b滿足條件,則下列不等式一定成立的是A. B. C. D.10.各項不為零的等差數(shù)列中,,數(shù)列是等比數(shù)列,且,則()A.4 B.8 C.16 D.64二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的部分圖像如圖所示,則的值為________.12.已知等差數(shù)列的前項和為,若,則=_______13.如圖,一棟建筑物AB高(30-10)m,在該建筑物的正東方向有一個通信塔CD.在它們之間的地面M點(B、M、D三點共線)測得對樓頂A、塔頂C的仰角分別是15°和60°,在樓頂A處測得對塔頂C的仰角為30°,則通信塔CD的高為______m.14.當,時,執(zhí)行完如圖所示的一段程序后,______.15.點從點出發(fā),沿單位圓順時針方向運動弧長到達點,則點的坐標為__________.16.對于數(shù)列滿足:,其前項和為記滿足條件的所有數(shù)列中,的最大值為,最小值為,則___________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)求的最值、單調(diào)遞減區(qū)間;(2)先把的圖象向左平移個單位,再把圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象,求的值.18.在中,角的對邊分別為,已知(1)求;(2)若為銳角三角形,且邊,求面積的取值范圍.19.已知0<α<π,cos(1)求tanα+(2)求sin2α+120.已知點,圓.(1)求過點M的圓的切線方程;(2)若直線與圓相交于A,B兩點,且弦AB的長為,求的值.21.已知函數(shù)的圖象向左平移個單位長度后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求函數(shù)的單調(diào)遞減區(qū)間及圖象的對稱軸方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:由圖象知,,,,,得,所以,為了得到的圖象,所以只需將的圖象向右平移個長度單位即可,故選D.考點:三角函數(shù)圖象.2、D【解析】
由平面向量基本定理和向量運算求解即可【詳解】根據(jù)題意得:,又,,所以.故選D.【點睛】本題主要考查了平面向量的基本定理的簡單應用,屬于基礎題.3、A【解析】
畫出可行域,平移基準直線到可行域邊界的位置,由此求得目標函數(shù)的取值范圍.【詳解】畫出可行域如下圖所示,平移基準直線到可行域邊界的位置,由圖可知目標函數(shù)分別在出取的最小值和最大值,最小值為,最大值為,故的取值范圍是,故選A.【點睛】本小題主要考查線性規(guī)劃求最大值和最小值,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.4、A【解析】
設長方體的棱長為,球的半徑為,根據(jù)題意有,再根據(jù)球的直徑是長方體的體對角線求解.【詳解】設長方體的棱長為,球的半徑為,根據(jù)題意,,解得,所以,所以外接球的表面積,故選:A【點睛】本題主要考查了球的組合體問題,還考查了運算求解的能力,屬于基礎題.5、B【解析】
直角利用待定系數(shù)法可得答案.【詳解】因為S8=8a1+a82【點睛】本題主要考查等差數(shù)列的基本量的相關計算,難度不大.6、B【解析】
利用等差數(shù)列的性質(zhì)將化為同底的,再化簡,將分子分母配湊成前n項和的形式,再利用題干條件,計算。【詳解】∵等差數(shù)列,的前項和分別為,,對任意的正整數(shù),都有,∴.故選B.【點睛】本題考查等差數(shù)列的性質(zhì)的應用,屬于中檔題。7、C【解析】
把不等式轉(zhuǎn)化為不等式,即可求解,得到答案.【詳解】由題意,不等式,等價于,解得,即不等式的解集為,故選C.【點睛】本題主要考查了一元二次不等式的求解,其中解答中熟記一元二次不等式的解法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.8、C【解析】
試題分析:可采用排除法,令和,驗證選項,只有,使得,故選C.考點:數(shù)列的通項公式.9、D【解析】
根據(jù)題意,由不等式的性質(zhì)依次分析選項,綜合即可得答案.【詳解】根據(jù)題意,依次分析選項:對于A、,時,有成立,故A錯誤;對于B、,時,有成立,故B錯誤;對于C、,時,有成立,故C錯誤;對于D、由不等式的性質(zhì)分析可得若,必有成立,則D正確;故選:D.【點睛】本題考查不等式的性質(zhì),對于錯誤的結論舉出反例即可.10、D【解析】
根據(jù)等差數(shù)列性質(zhì)可求得,再利用等比數(shù)列性質(zhì)求得結果.【詳解】由等差數(shù)列性質(zhì)可得:又各項不為零,即由等比數(shù)列性質(zhì)可得:本題正確選項:【點睛】本題考查等差數(shù)列、等比數(shù)列性質(zhì)的應用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由圖可得,,求出,得出,利用,然后化簡即可求解【詳解】由題圖知,,所以,所以.由正弦函數(shù)的對稱性知,所以答案:【點睛】本題利用函數(shù)的周期特性求解,難點在于通過圖像求出函數(shù)的解析式和函數(shù)的最小正周期,屬于基礎題12、【解析】
利用等差數(shù)列前項和,可得;利用等差數(shù)列的性質(zhì)可得,然后求解三角函數(shù)值即可.【詳解】等差數(shù)列的前項和為,因為,所以;又,所以.故答案為:.【點睛】本題考查等差數(shù)列的前項和公式和等差數(shù)列的性質(zhì)的應用,熟練掌握和若,則是解題的關鍵.13、60【解析】
由已知可以求出、、的大小,在中,利用銳角三角函數(shù),可以求出.在中,運用正弦定理,可以求出.在中,利用銳角三角函數(shù),求出.【詳解】由題意可知:,,由三角形內(nèi)角和定理可知.在中,.在中,由正弦定理可知:,在中,.【點睛】本題考查了銳角三角函數(shù)、正弦定理,考查了數(shù)學運算能力.14、1【解析】
模擬程序運行,可得出結論.【詳解】時,滿足,所以.故答案為:1.【點睛】本題考查程序框圖,考查條件結構,解題時模擬程序運行即可.15、【解析】
由題意可得OQ恰好是角的終邊,利用任意角的三角函數(shù)的定義,求得Q點的坐標.【詳解】點P從點出發(fā),沿單位圓順時針方向運動弧長到達Q點,則OQ恰好是角的終邊,故Q點的橫坐標,縱坐標為,故答案為:【點睛】本題主要考查任意角的三角函數(shù)的定義,屬于容易題.16、1【解析】
由,,,,,分別令,3,4,5,求得的前5項,觀察得到最小值,,計算即可得到的值.【詳解】由,,,,,可得,解得,又,,可得或,又,,,可得或5;或6;或或8;又,,,,可得或6或7;或7或8;或8或9或10或12;或10或12或1.綜上可得的最大值,最小值為,則.故答案為:1.【點睛】本題考查數(shù)列的和的最值,注意運用元素與集合的關系,運用列舉法,考查判斷能力和運算能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),,單調(diào)遞減區(qū)間為;(2).【解析】
(1)函數(shù),得最大值為,并解不等式,得到函數(shù)的單調(diào)遞減區(qū)間;(2)由平移變換、伸縮變換得到函數(shù),再把代入求值.【詳解】(1)因為,所以當時,,當時,.由,所以函數(shù)的單調(diào)遞減區(qū)間為.(2)的圖象向左平移個單位得:,再把圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變)得:,當時,.【點睛】本題考查三角函數(shù)中的輔助角公式、三角函數(shù)的性質(zhì)、圖象變換等知識,對三角函數(shù)圖象與性質(zhì)進行綜合考查.18、(1);(2)【解析】
(1)利用正弦定理邊化角,再利用和角的正弦公式化簡即得B的值;(2)先根據(jù)已知求出,再求面積的取值范圍.【詳解】解:(1),即可得,∵∴∵∴∴由,可得;(2)若為銳角三角形,且,由余弦定理可得,由三角形為銳角三角形,可得且解得,可得面積【點睛】本題主要考查正弦定理余弦定理解三角形,考查三角形面積的取值范圍的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.19、(1)12;(2)1【解析】
(1)利用同角三角函數(shù)平方和商數(shù)關系求得tanα;利用兩角和差正切公式求得結果;(2)利用二倍角公式化簡所求式子,分子分母同時除以cos2α【詳解】(1)∵0<α<π,cosα=-3∴tanα=(2)sin=【點睛】本題考查利用同角三角函數(shù)、兩角和差正切公式、二倍角的正余弦公式化簡求值問題,關鍵是能夠利用求解關于正余弦的齊次式的方式,將問題轉(zhuǎn)化為與tanα20、(1)或.(2)【解析】
(1)分切線的斜率不存在與存在兩種情況分析.當斜率存在時設方程為,再根據(jù)圓心到直線的距離等于半徑求解即可.(2)利用垂徑定理根據(jù)圓心到直線的距離列出等式求解即可.【詳解】解:(1)由題意知圓心的坐標為,半徑,當過點M的直線的斜率不存在時,方程為.由圓心到直線的距離知,此時,直線與圓相切.當過點M的直線的斜率存在時,設方程為,即.由題意知,解得,∴方程為.故過點M的圓的切線方程為或.(2)∵圓心到直線的距離為,∴,解得.【點睛】本題主要考查了直線與圓相切與相交時的求解.注意直線過定點時分析斜率不存在與存在兩種情況.直線與圓相切用圓心到直線的距離等于半徑列式,直線與圓相交用垂徑定理列式.屬于中檔題.21、(1),;(2)減區(qū)間為,對稱軸方程為【解析】
(1)先根據(jù)平移后周
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 用戶行為與滿意度研究-洞察分析
- 《景觀色彩構成知識》課件
- 加盟合作的意向書(5篇)
- 農(nóng)業(yè)機械行業(yè)產(chǎn)業(yè)鏈分析
- 利用科技力量促進兒童健康飲食教育的實踐探索
- 專業(yè)教育資源在不同領域的應用與價值
- 減肥藥的成分解析與效果評估
- 《大學物理力學》課件
- 從零開始打造高效能的創(chuàng)業(yè)團隊
- 分工明確對提升團隊工作效率的重要性
- 2024年獨家:國際商標授權使用合同
- 2024年農(nóng)行農(nóng)業(yè)用途個人貸款抵押合同樣本3篇
- 2024年瀝青攪拌站建設及設備供應協(xié)議版
- 遼寧省部分高中2023-2024學年高二上學期期末考試 物理 含解析
- 2024年《檔案工作實務》考試復習題庫400題(含答案)
- 設計質(zhì)量工程師(DQE)的角色認知及工作職責
- 烤腸銷售合同范例
- 中國傳統(tǒng)節(jié)日《元旦節(jié)》課件
- 完整版金蝶EAS財務系統(tǒng)操作手冊
- 2024村居后備干部試題庫及答案(完整版)
- 醫(yī)院題材小品劇本;瘋子當醫(yī)生
評論
0/150
提交評論