上海市上外附大境中學(xué)2023年數(shù)學(xué)高一第二學(xué)期期末預(yù)測試題含解析_第1頁
上海市上外附大境中學(xué)2023年數(shù)學(xué)高一第二學(xué)期期末預(yù)測試題含解析_第2頁
上海市上外附大境中學(xué)2023年數(shù)學(xué)高一第二學(xué)期期末預(yù)測試題含解析_第3頁
上海市上外附大境中學(xué)2023年數(shù)學(xué)高一第二學(xué)期期末預(yù)測試題含解析_第4頁
上海市上外附大境中學(xué)2023年數(shù)學(xué)高一第二學(xué)期期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知等比數(shù)列的前項(xiàng)和為,則下列一定成立的是()A.若,則 B.若,則C.若,則 D.若,則2.已知數(shù)列是等差數(shù)列,數(shù)列滿足,的前項(xiàng)和用表示,若滿足,則當(dāng)取得最大值時(shí),的值為()A.16 B.15 C.14 D.133.在下列各圖中,每個(gè)圖的兩個(gè)變量具有相關(guān)關(guān)系的圖是()A.(1)(2) B.(1)(3) C.(2)(4) D.(2)(3)4.已知平面向量,,,,且,則向量與向量的夾角為()A. B. C. D.5.函數(shù)(,)的部分圖象如圖所示,則的值分別是()A. B. C. D.6.若是一個(gè)圓的方程,則實(shí)數(shù)的取值范圍是()A. B.C. D.7.在中,,則是()A.等腰直角三角形 B.等腰或直角三角形 C.等腰三角形 D.直角三角形8.設(shè)集合,則()A. B. C. D.9.已知向量,,,的夾角為45°,若,則()A. B. C.2 D.310.化簡()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖所示的莖葉圖記錄了甲、乙兩組各五名學(xué)生在一次英語聽力測試中的成績(單位:分),已知甲組數(shù)據(jù)的中位數(shù)為17,則x的值為_________.12.如圖,正方體的棱長為2,點(diǎn)在正方形的邊界及其內(nèi)部運(yùn)動(dòng),平面區(qū)域由所有滿足的點(diǎn)組成,則的面積是__________.13.已知一組樣本數(shù)據(jù),且,平均數(shù),則該組數(shù)據(jù)的標(biāo)準(zhǔn)差為__________.14.若,則____________.15.已知函數(shù)那么的值為.16.已知等邊三角形的邊長為2,點(diǎn)P在邊上,點(diǎn)Q在邊的延長線上,若,則的最小值為______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的最小正周期及單調(diào)遞減區(qū)間;(2)若,且,求的值.18.如圖,在四棱錐P-ABCD中,平面PAD⊥底面ABCD,側(cè)棱PA=PD=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).(Ⅰ)求證:PO⊥平面ABCD;(Ⅱ)線段AD上是否存在點(diǎn),使得它到平面PCD的距離為?若存在,求出值;若不存在,請說明理由.19.如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1,圓心在上.(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線方程;(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.20.如圖,正三棱柱的各棱長均為,為棱的中點(diǎn),求異面直線與所成角的余弦值.21.如圖,在三棱錐中,垂直于平面,.求證:平面.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

設(shè)等比數(shù)列的公比為q,利用通項(xiàng)公式與求和公式即可判斷出結(jié)論.【詳解】設(shè)等比數(shù)列的公比為q,若,則,則,而與0的大小關(guān)系不確定.若,則,則與同號,則與0的大小關(guān)系不確定.故選:C【點(diǎn)睛】本題主要考查了等比數(shù)列的通項(xiàng)公式與求和公式及其性質(zhì)、不等式的性質(zhì)與解法,考查了推理能力與計(jì)算能力,屬于中檔題.2、A【解析】

設(shè)等差數(shù)列的公差為,根據(jù)得到,推出,判斷出當(dāng)時(shí),;時(shí),;再根據(jù),判斷出對取正負(fù)的影響,進(jìn)而可得出結(jié)果.【詳解】設(shè)等差數(shù)列的公差為,因?yàn)閿?shù)列是等差數(shù)列,,所以,因此,所以,所以,,因此,當(dāng)時(shí),;時(shí),,因?yàn)?,所以?dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),因?yàn)椋?;因?yàn)樗裕?dāng)時(shí),取得最大值.故選:A【點(diǎn)睛】本題主要考查等差數(shù)列的應(yīng)用,熟記等差數(shù)列的性質(zhì),及其函數(shù)特征即可,屬于??碱}型.3、D【解析】

仔細(xì)觀察圖象,尋找散點(diǎn)圖間的相互關(guān)系,主要觀察這些散點(diǎn)是否圍繞一條曲線附近排列著,由此能夠得到正確答案.【詳解】散點(diǎn)圖(1)中,所有的散點(diǎn)都在曲線上,所以(1)具有函數(shù)關(guān)系;

散點(diǎn)圖(2)中,所有的散點(diǎn)都分布在一條直線的附近,所以(2)具有相關(guān)關(guān)系;

散點(diǎn)圖(3)中,所有的散點(diǎn)都分布在一條曲線的附近,所以(3)具有相關(guān)關(guān)系,

散點(diǎn)圖(4)中,所有的散點(diǎn)雜亂無章,沒有分布在一條曲線的附近,所以(4)沒有相關(guān)關(guān)系.

故選D.【點(diǎn)睛】本題考查散點(diǎn)圖和相關(guān)關(guān)系,是基礎(chǔ)題.4、B【解析】

根據(jù)可得到:,由此求得;利用向量夾角的求解方法可求得結(jié)果.【詳解】由題意知:,則設(shè)向量與向量的夾角為則本題正確選項(xiàng):【點(diǎn)睛】本題考查向量夾角的求解,關(guān)鍵是能夠通過平方運(yùn)算將模長轉(zhuǎn)變?yōu)橄蛄康臄?shù)量積,從而得到向量的位置關(guān)系.5、A【解析】

利用,求出,再利用,求出即可【詳解】,,,則有,代入得,則有,,,又,故答案選A【點(diǎn)睛】本題考查三角函數(shù)的圖像問題,依次求出和即可,屬于簡單題6、C【解析】

根據(jù)即可求出結(jié)果.【詳解】據(jù)題意,得,所以.【點(diǎn)睛】本題考查圓的一般方程,屬于基礎(chǔ)題型.7、D【解析】

先由可得,然后利用與三角函數(shù)的和差公式可推出,從而得到是直角三角形【詳解】因?yàn)?,所以所以因?yàn)樗约此运砸驗(yàn)椋砸驗(yàn)?,所以,即是直角三角形故選:D【點(diǎn)睛】要判斷三角形的形狀,應(yīng)圍繞三角形的邊角關(guān)系進(jìn)行思考,主要有以下兩條途徑:①角化邊:把已知條件轉(zhuǎn)化為只含邊的關(guān)系,通過因式分解、配方等得到邊的對應(yīng)關(guān)系,從而判斷三角形形狀,②邊化角:把已知條件轉(zhuǎn)化為內(nèi)角的三角函數(shù)間的關(guān)系,通過三角恒等變換,得出內(nèi)角的關(guān)系,從而判斷三角形的形狀.8、B【解析】試題分析:由已知得,,故,選B.考點(diǎn):集合的運(yùn)算.9、C【解析】

利用向量乘法公式得到答案.【詳解】向量,,,的夾角為45°故答案選C【點(diǎn)睛】本題考查了向量的運(yùn)算,意在考查學(xué)生的計(jì)算能力.10、A【解析】

減法先變?yōu)榧臃?,利用向量的三角形法則得到答案.【詳解】故答案選A【點(diǎn)睛】本題考查了向量的加減法,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)莖葉圖中數(shù)據(jù)和中位數(shù)的定義可構(gòu)造方程求得.【詳解】甲組數(shù)據(jù)的中位數(shù)為,解得:故答案為:【點(diǎn)睛】本題考查莖葉圖中中位數(shù)相關(guān)問題的求解,屬于基礎(chǔ)題.12、【解析】,所以點(diǎn)平面區(qū)域是底面內(nèi)以為圓心,以1為半徑的外面區(qū)域,則的面積是13、11【解析】

根據(jù)題意,利用方差公式計(jì)算可得數(shù)據(jù)的方差,進(jìn)而利用標(biāo)準(zhǔn)差公式可得答案.【詳解】根據(jù)題意,一組樣本數(shù)據(jù),且,平均數(shù),則其方差,則其標(biāo)準(zhǔn)差,故答案為:11.【點(diǎn)睛】本題主要考查平均數(shù)、方差與標(biāo)準(zhǔn)差,屬于基礎(chǔ)題.樣本方差,標(biāo)準(zhǔn)差.14、【解析】故答案為.15、【解析】試題分析:因?yàn)楹瘮?shù)所以==.考點(diǎn):本題主要考查分段函數(shù)的概念,計(jì)算三角函數(shù)值.點(diǎn)評:基礎(chǔ)題,理解分段函數(shù)的概念,代入計(jì)算.16、【解析】

以為軸建立平面直角坐標(biāo)系,設(shè),用t表示,求其最小值即可得到本題答案.【詳解】過點(diǎn)A作BC的垂線,垂足為O,以為軸建立平面直角坐標(biāo)系.作PM垂直BC交于點(diǎn)M,QH垂直y軸交于點(diǎn)H,CN垂直HQ交于點(diǎn)N.設(shè),則,故有所以,,當(dāng)時(shí),取最小值.故答案為:【點(diǎn)睛】本題主要考查利用建立平面直角坐標(biāo)系解決向量的取值范圍問題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)最小正周期為,單調(diào)遞減區(qū)間為(2).【解析】

(1)利用二倍角降冪公式和輔助角公式將函數(shù)的解析式化為,利用周期公式可得出函數(shù)的最小正周期,然后解不等式可得出函數(shù)的單調(diào)遞減區(qū)間;(2)由可得出角的值,再利用兩角和的正切公式可計(jì)算出的值.【詳解】(1).函數(shù)的最小正周期為,令,解得.所以,函數(shù)的單調(diào)遞減區(qū)間為;(2),即,,.,故,因此.【點(diǎn)睛】本題考查三角函數(shù)基本性質(zhì),考查兩角和的正切公式求值,解題時(shí)要利用三角恒等變換思想將三角函數(shù)的解析式化簡,利用正弦、余弦函數(shù)的性質(zhì)求解,考查運(yùn)算求解能力,屬于中等題.18、(Ⅰ)證明見解析;(Ⅱ).【解析】試題分析:(Ⅰ)只需證明,又由面面垂直的性質(zhì)定理知平面;(Ⅱ)連接、,假設(shè)存在點(diǎn),使得它到平面的距離為,設(shè),由,求得的值即可.試題解析:(Ⅰ)證明:在中,為中點(diǎn),所以.又側(cè)面底面,平面平面,平面,所以平面.(Ⅱ)連接、假設(shè)存在點(diǎn),使得它到平面的距離為.設(shè),則因?yàn)椋瑸榈闹悬c(diǎn),所以,且所以因?yàn)?,且所以在中,所以所以由,即解得所以存在點(diǎn)滿足題意,此時(shí).考點(diǎn):1.平面與平面垂直的性質(zhì);2.幾何體的體積.19、(1)或;(2).【解析】

(1)兩直線方程聯(lián)立可解得圓心坐標(biāo),又知圓的半徑為,可得圓的方程,根據(jù)點(diǎn)到直線距離公式,列方程可求得直線斜率,進(jìn)而得切線方程;(2)根據(jù)圓的圓心在直線:上可設(shè)圓的方程為,由,可得的軌跡方程為,若圓上存在點(diǎn),使,只需兩圓有公共點(diǎn)即可.【詳解】(1)由得圓心,∵圓的半徑為1,∴圓的方程為:,顯然切線的斜率一定存在,設(shè)所求圓的切線方程為,即.∴,∴,∴或.∴所求圓的切線方程為或.(2)∵圓的圓心在直線:上,所以,設(shè)圓心為,則圓的方程為.又∵,∴設(shè)為,則,整理得,設(shè)為圓.所以點(diǎn)應(yīng)該既在圓上又在圓上,即圓和圓有交點(diǎn),∴,由,得,由,得.綜上所述,的取值范圍為.考點(diǎn):1、圓的標(biāo)準(zhǔn)方程及切線的方程;2、圓與圓的位置關(guān)系及轉(zhuǎn)化與劃歸思想的應(yīng)用.【方法點(diǎn)睛】本題主要考查圓的標(biāo)準(zhǔn)方程及切線的方程、圓與圓的位置關(guān)系及轉(zhuǎn)化與劃歸思想的應(yīng)用.屬于難題.轉(zhuǎn)化與劃歸思想是解決高中數(shù)學(xué)問題的一種重要思想方法,是中學(xué)數(shù)學(xué)四種重要的數(shù)學(xué)思想之一,尤其在解決知識(shí)點(diǎn)較多以及知識(shí)跨度較大的問題發(fā)揮著奇特功效,大大提高了解題能力與速度.運(yùn)用這種方法的關(guān)鍵是將題設(shè)條件研究透,這樣才能快速找準(zhǔn)突破點(diǎn).以便將問題轉(zhuǎn)化為我們所熟悉的知識(shí)領(lǐng)域,進(jìn)而順利解答,希望同學(xué)們能夠熟練掌握并應(yīng)用于解題當(dāng)中.本題(2)巧妙地將圓上存在點(diǎn),使問題轉(zhuǎn)化為,兩圓有公共點(diǎn)問題是解決問題的關(guān)鍵所在.20、【解析】

作交于,則為異面直線與所成角,在中求出各邊的長度,根據(jù)余弦定理,得到的余弦值,即為答案.【詳解】作交于,則為異面直線與所成角,因?yàn)闉橹悬c(diǎn),所以是的一條中位線,所以,因?yàn)檎庵?,所以面,而面?/p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論