2022-2023學年福建省晉江市三校中考四模數(shù)學試題含解析_第1頁
2022-2023學年福建省晉江市三校中考四模數(shù)學試題含解析_第2頁
2022-2023學年福建省晉江市三校中考四模數(shù)學試題含解析_第3頁
2022-2023學年福建省晉江市三校中考四模數(shù)學試題含解析_第4頁
2022-2023學年福建省晉江市三校中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.2.下列圖形中,線段MN的長度表示點M到直線l的距離的是()A. B. C. D.3.下列各數(shù)中,為無理數(shù)的是()A. B. C. D.4.如圖是根據(jù)我市某天七個整點時的氣溫繪制成的統(tǒng)計圖,則這七個整點時氣溫的中位數(shù)和平均數(shù)分別是()A.30,28B.26,26C.31,30D.26,225.計算4+(﹣2)2×5=()A.﹣16B.16C.20D.246.“山西八分鐘,驚艷全世界”.2019年2月25日下午,在外交部藍廳隆重舉行山西全球推介活動.山西經濟結構從“一煤獨大”向多元支撐轉變,三年累計退出煤炭過剩產能8800余萬噸,煤層氣產量突破56億立方米.數(shù)據(jù)56億用科學記數(shù)法可表示為()A.56×108 B.5.6×108 C.5.6×109 D.0.56×10107.|﹣3|=()A. B.﹣ C.3 D.﹣38.如圖,等邊△ABC的邊長為1cm,D、E分別AB、AC是上的點,將△ADE沿直線DE折疊,點A落在點A′處,且點A′在△ABC外部,則陰影部分的周長為()cmA.1 B.2 C.3 D.49.如圖,若銳角△ABC內接于⊙O,點D在⊙O外(與點C在AB同側),則∠C與∠D的大小關系為()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.無法確定10.已知△ABC,D是AC上一點,尺規(guī)在AB上確定一點E,使△ADE∽△ABC,則符合要求的作圖痕跡是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在平面直角坐標系中,點A是拋物線y=a(x+)2+k與y軸的交點,點B是這條拋物線上的另一點,且AB∥x軸,則以AB為邊的正方形ABCD的周長為_____.12.如圖,直線與雙曲線(k≠0)相交于A(﹣1,)、B兩點,在y軸上找一點P,當PA+PB的值最小時,點P的坐標為_________.13.如果2,那么=_____(用向量,表示向量).14.方程的解是.15.一艘貨輪以182km/h的速度在海面上沿正東方向航行,當行駛至A處時,發(fā)現(xiàn)它的東南方向有一燈塔B,貨輪繼續(xù)向東航行30分鐘后到達C處,發(fā)現(xiàn)燈塔B在它的南偏東15°方向,則此時貨輪與燈塔B的距離是________km.16.若圓錐的底面半徑長為10,側面展開圖是一個半圓,則該圓錐的母線長為_____.17.如圖,在每個小正方形的邊長為1的網格中,點A,B,C,D均在格點上,AB與CD相交于點E.(1)AB的長等于_____;(2)點F是線段DE的中點,在線段BF上有一點P,滿足,請在如圖所示的網格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_____.三、解答題(共7小題,滿分69分)18.(10分)小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時間,以800米/分的速度勻速從乙地到甲地,兩人距離乙地的路程y(米)與小張出發(fā)后的時間x(分)之間的函數(shù)圖象如圖所示.求小張騎自行車的速度;求小張停留后再出發(fā)時y與x之間的函數(shù)表達式;求小張與小李相遇時x的值.19.(5分)如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC的長為0.60m,底座BC與支架AC所成的角∠ACB=75°,點A、H、F在同一條直線上,支架AH段的長為1m,HF段的長為1.50m,籃板底部支架HE的長為0.75m.求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).求籃板頂端F到地面的距離.(結果精確到0.1m;參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)20.(8分)已知拋物線y=ax2+bx+c.(Ⅰ)若拋物線的頂點為A(﹣2,﹣4),拋物線經過點B(﹣4,0)①求該拋物線的解析式;②連接AB,把AB所在直線沿y軸向上平移,使它經過原點O,得到直線l,點P是直線l上一動點.設以點A,B,O,P為頂點的四邊形的面積為S,點P的橫坐標為x,當4+6≤S≤6+8時,求x的取值范圍;(Ⅱ)若a>0,c>1,當x=c時,y=0,當0<x<c時,y>0,試比較ac與l的大小,并說明理由.21.(10分)如圖,△ABC是等腰三角形,AB=AC,點D是AB上一點,過點D作DE⊥BC交BC于點E,交CA延長線于點F.證明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的長,22.(10分)已知,△ABC中,∠A=68°,以AB為直徑的⊙O與AC,BC的交點分別為D,E(Ⅰ)如圖①,求∠CED的大?。唬á颍┤鐖D②,當DE=BE時,求∠C的大?。?3.(12分)某青春黨支部在精準扶貧活動中,給結對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.求甲、乙兩種樹苗每棵的價格各是多少元?在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?24.(14分)如圖,在平面直角坐標系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點A(3,1),且過點B(0,﹣2).(1)求反比例函數(shù)和一次函數(shù)的表達式;(2)如果點P是x軸上一點,且△ABP的面積是3,求點P的坐標.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A不正確;B、既是軸對稱圖形,又是中心對稱圖形,故B正確;C、是軸對稱圖形,不是中心對稱圖形,故C不正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D不正確.故選B.【點睛】本題考查了軸對稱圖形和中心對稱圖形的概念,以及對軸對稱圖形和中心對稱圖形的認識.2、A【解析】解:圖B、C、D中,線段MN不與直線l垂直,故線段MN的長度不能表示點M到直線l的距離;圖A中,線段MN與直線l垂直,垂足為點N,故線段MN的長度能表示點M到直線l的距離.故選A.3、D【解析】A.=2,是有理數(shù);B.=2,是有理數(shù);C.,是有理數(shù);D.,是無理數(shù),故選D.4、B.【解析】試題分析:由圖可知,把7個數(shù)據(jù)從小到大排列為22,22,23,1,28,30,31,中位數(shù)是第4位數(shù),第4位是1,所以中位數(shù)是1.平均數(shù)是(22×2+23+1+28+30+31)÷7=1,所以平均數(shù)是1.故選B.考點:中位數(shù);加權平均數(shù).5、D【解析】分析:根據(jù)有理數(shù)的乘方、乘法和加法可以解答本題.詳解:4+(﹣2)2×5=4+4×5=4+20=24,故選:D.點睛:本題考查有理數(shù)的混合運算,解答本題的關鍵是明確有理數(shù)的混合運算的計算方法.6、C【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值是易錯點,由于56億有10位,所以可以確定n=10﹣1=1.【詳解】56億=56×108=5.6×101,故選C.【點睛】此題考查科學記數(shù)法表示較大的數(shù)的方法,準確確定a與n值是關鍵.7、C【解析】

根據(jù)絕對值的定義解答即可.【詳解】|-3|=3故選:C【點睛】本題考查的是絕對值,理解絕對值的定義是關鍵.8、C【解析】

由題意得到DA′=DA,EA′=EA,經分析判斷得到陰影部分的周長等于△ABC的周長即可解決問題.【詳解】如圖,由題意得:DA′=DA,EA′=EA,∴陰影部分的周長=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故選C.【點睛】本題考查了等邊三角形的性質以及折疊的問題,折疊問題的實質是“軸對稱”,解題關鍵是找出經軸對稱變換所得的等量關系.9、A【解析】

直接利用圓周角定理結合三角形的外角的性質即可得.【詳解】連接BE,如圖所示:

∵∠ACB=∠AEB,

∠AEB>∠D,

∴∠C>∠D.

故選:A.【點睛】考查了圓周角定理以及三角形的外角,正確作出輔助線是解題關鍵.10、A【解析】

以DA為邊、點D為頂點在△ABC內部作一個角等于∠B,角的另一邊與AB的交點即為所求作的點.【詳解】如圖,點E即為所求作的點.故選:A.【點睛】本題主要考查作圖-相似變換,根據(jù)相似三角形的判定明確過點D作一角等于∠B或∠C,并熟練掌握做一個角等于已知角的作法式解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

根據(jù)題意和二次函數(shù)的性質可以求得線段AB的長度,從而可以求得正方形ABCD的周長.【詳解】∵在平面直角坐標系中,點A是拋物線y=a(x+)2+k與y軸的交點,∴點A的橫坐標是0,該拋物線的對稱軸為直線x=﹣,∵點B是這條拋物線上的另一點,且AB∥x軸,∴點B的橫坐標是﹣3,∴AB=|0﹣(﹣3)|=3,∴正方形ABCD的周長為:3×4=1,故答案為:1.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征、正方形的性質,解題的關鍵是找出所求問題需要的條件.12、(0,).【解析】試題分析:把點A坐標代入y=x+4得a=3,即A(﹣1,3),把點A坐標代入雙曲線的解析式得3=﹣k,即k=﹣3,聯(lián)立兩函數(shù)解析式得:,解得:,,即點B坐標為:(﹣3,1),作出點A關于y軸的對稱點C,連接BC,與y軸的交點即為點P,使得PA+PB的值最小,則點C坐標為:(1,3),設直線BC的解析式為:y=ax+b,把B、C的坐標代入得:,解得:,所以函數(shù)解析式為:y=x+,則與y軸的交點為:(0,).考點:反比例函數(shù)與一次函數(shù)的交點問題;軸對稱-最短路線問題.13、【解析】∵2(+)=+,∴2+2=+,∴=-2,故答案為.點睛:本題看成平面向量、一元一次方程等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考基礎題.14、x=1.【解析】

根據(jù)解分式方程的步驟解答即可.【詳解】去分母得:2x=3x﹣1,解得:x=1,經檢驗x=1是分式方程的解,故答案為x=1.【點睛】本題主要考查了解分式方程的步驟,牢牢掌握其步驟就解答此類問題的關鍵.15、1【解析】

作CE⊥AB于E,根據(jù)題意求出AC的長,根據(jù)正弦的定義求出CE,根據(jù)三角形的外角的性質求出∠B的度數(shù),根據(jù)正弦的定義計算即可.【詳解】作CE⊥AB于E,12km/h×30分鐘=92km,∴AC=92km,∵∠CAB=45°,∴CE=AC?sin45°=9km,∵燈塔B在它的南偏東15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,∴BC=CEsin∠B=故答案為:1.【點睛】本題考查的是解直角三角形的應用-方向角問題,正確標注方向角、熟記銳角三角函數(shù)的定義是解題的關鍵.16、2【解析】

側面展開后得到一個半圓,半圓的弧長就是底面圓的周長.依此列出方程即可.【詳解】設母線長為x,根據(jù)題意得2πx÷2=2π×5,解得x=1.故答案為2.【點睛】本題考查了圓錐的計算,解題的關鍵是明白側面展開后得到一個半圓就是底面圓的周長,難度不大.17、見圖形【解析】分析:(Ⅰ)利用勾股定理計算即可;(Ⅱ)連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點G、H,連接GH交DE于F,因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K,因為BI∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3;詳解:(Ⅰ)AB的長==;(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1.取格點G、H,連接GH交DE于F.∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K.∵BI∥DJ,∴BK:DK=BI:DJ=5:2.連接EK交BF于P,可證BP:PF=5:3.故答案為(Ⅰ);(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點G、H,連接GH交DE于F.因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K.因為BI∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3.點睛:本題考查了作圖﹣應用與設計,平行線分線段成比例定理等知識,解題的關鍵是靈活運用所學知識解決問題,所以中考??碱}型.三、解答題(共7小題,滿分69分)18、(1)300米/分;(2)y=﹣300x+3000;(3)分.【解析】

(1)由圖象看出所需時間.再根據(jù)路程÷時間=速度算出小張騎自行車的速度.

(2)根據(jù)由小張的速度可知:B(10,0),設出一次函數(shù)解析式,用待定系數(shù)法求解即可.(3)求出CD的解析式,列出方程,求解即可.【詳解】解:(1)由題意得:(米/分),答:小張騎自行車的速度是300米/分;(2)由小張的速度可知:B(10,0),設直線AB的解析式為:y=kx+b,把A(6,1200)和B(10,0)代入得:解得:∴小張停留后再出發(fā)時y與x之間的函數(shù)表達式;(3)小李騎摩托車所用的時間:∵C(6,0),D(9,2400),同理得:CD的解析式為:y=800x﹣4800,則答:小張與小李相遇時x的值是分.【點睛】考查一次函數(shù)的應用,考查學生觀察圖象的能力,熟練掌握待定系數(shù)法求一次函數(shù)解析式是解題的關鍵.19、(1)∠FHE=60°;(2)籃板頂端F到地面的距離是4.4米.【解析】

(1)直接利用銳角三角函數(shù)關系得出cos∠FHE=,進而得出答案;(2)延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到結論.【詳解】(1)由題意可得:cos∠FHE=,則∠FHE=60°;(2)延長FE交CB的延長線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG≈2.17(m),∴FM=FG+GM≈4.4(米),答:籃板頂端F到地面的距離是4.4米.【點睛】本題考查解直角三角形、銳角三角函數(shù)、解題的關鍵是添加輔助線,構造直角三角形,記住銳角三角函數(shù)的定義.20、(Ⅰ)①y=x2+3x②當3+6≤S≤6+2時,x的取值范圍為是≤x≤或≤x≤(Ⅱ)ac≤1【解析】

(I)①由拋物線的頂點為A(-2,-3),可設拋物線的解析式為y=a(x+2)2-3,代入點B的坐標即可求出a值,此問得解,②根據(jù)點A、B的坐標利用待定系數(shù)法可求出直線AB的解析式,進而可求出直線l的解析式,分點P在第二象限及點P在第四象限兩種情況考慮:當點P在第二象限時,x<0,通過分割圖形求面積法結合3+6≤S≤6+2,即可求出x的取值范圍,當點P在第四象限時,x>0,通過分割圖形求面積法結合3+6≤S≤6+2,即可求出x的取值范圍,綜上即可得出結論,(2)由當x=c時y=0,可得出b=-ac-1,由當0<x<c時y>0,可得出拋物線的對稱軸x=≥c,進而可得出b≤-2ac,結合b=-ac-1即可得出ac≤1.【詳解】(I)①設拋物線的解析式為y=a(x+2)2﹣3,∵拋物線經過點B(﹣3,0),∴0=a(﹣3+2)2﹣3,解得:a=1,∴該拋物線的解析式為y=(x+2)2﹣3=x2+3x.②設直線AB的解析式為y=kx+m(k≠0),將A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,得:,解得:,∴直線AB的解析式為y=﹣2x﹣2.∵直線l與AB平行,且過原點,∴直線l的解析式為y=﹣2x.當點P在第二象限時,x<0,如圖所示.S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,∴S=S△POB+S△AOB=﹣3x+2(x<0).∵3+6≤S≤6+2,∴,即,解得:≤x≤,∴x的取值范圍是≤x≤.當點P′在第四象限時,x>0,過點A作AE⊥x軸,垂足為點E,過點P′作P′F⊥x軸,垂足為點F,則S四邊形AEOP′=S梯形AEFP′﹣S△OFP′=?(x+2)﹣?x?(2x)=3x+3.∵S△ABE=×2×3=3,∴S=S四邊形AEOP′+S△ABE=3x+2(x>0).∵3+6≤S≤6+2,∴,即,解得:≤x≤,∴x的取值范圍為≤x≤.綜上所述:當3+6≤S≤6+2時,x的取值范圍為是≤x≤或≤x≤.(II)ac≤1,理由如下:∵當x=c時,y=0,∴ac2+bc+c=0,∵c>1,∴ac+b+1=0,b=﹣ac﹣1.由x=c時,y=0,可知拋物線與x軸的一個交點為(c,0).把x=0代入y=ax2+bx+c,得y=c,∴拋物線與y軸的交點為(0,c).∵a>0,∴拋物線開口向上.∵當0<x<c時,y>0,∴拋物線的對稱軸x=﹣≥c,∴b≤﹣2ac.∵b=﹣ac﹣1,∴﹣ac﹣1≤﹣2ac,∴ac≤1.【點睛】本題主要考查了待定系數(shù)法求二次(一次)函數(shù)解析式、三角形的面積、梯形的面積、解一元一次不等式組、二次函數(shù)圖象上點的坐標特征以及二次函數(shù)的性質,解題的關鍵是:(1)①巧設頂點式,代入點B的坐標求出a值,②分點P在第二象限及點P在第四象限兩種情況找出x的取值范圍,(2)根據(jù)二次函數(shù)圖象上點的坐標特征結合二次函數(shù)的性質,找出b=-ac-1及b≤-2ac.21、(1)見解析;(2)EC=1.【解析】

(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性質可推出∠F=∠BDE,再根據(jù)對頂角相等進行等量代換即可推出∠F=∠FDA,于是得到結論;(2)根據(jù)解直角三角形和等邊三角形的性質即可得到結論.【詳解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=1,∴BE=BD=2,∵AB=AC,∴△ABC是等邊三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.【點睛】本題主要考查等腰三角形的判定與性質、余角的性質、對頂角的性質等知識點,關鍵根據(jù)相關的性質定理,通過等量代換推出∠F=∠FDA,即可推出結論.22、(Ⅰ)68°(Ⅱ)56°【解析】

(1)圓內接四邊形的一個外角等于它的內對角,利用圓內接四邊形的性質證明∠CED=∠A即可,(2)連接AE,在Rt△AEC中,先根據(jù)同圓中,相等的弦所對弧相等,再根據(jù)同圓中,相等的弧所對圓周角相等,求出∠EAC,最后根據(jù)直徑所對圓周是直角,利用直角三角形兩銳角互余即可解決問題.【詳解】(Ⅰ)∵四邊形ABED圓內接四邊形,∴∠A+∠DEB=180°,∵∠CED+∠DEB=180°,∴∠CED=∠A,∵∠A=68°,∴∠CED=68°.(Ⅱ)連接AE.∵DE=BD,∴,∴∠DAE=∠EAB=∠CAB=34°,∵AB是直徑,∴∠AEB=90°,∴∠AEC=90°,∴∠C=90°﹣∠DA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論