石墨烯表面制備納米層氧化物薄膜及RHEED的原位監(jiān)測研究_第1頁
石墨烯表面制備納米層氧化物薄膜及RHEED的原位監(jiān)測研究_第2頁
石墨烯表面制備納米層氧化物薄膜及RHEED的原位監(jiān)測研究_第3頁
石墨烯表面制備納米層氧化物薄膜及RHEED的原位監(jiān)測研究_第4頁
石墨烯表面制備納米層氧化物薄膜及RHEED的原位監(jiān)測研究_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

石墨烯表面制備納米層氧化物薄膜及RHEED的原位監(jiān)測研究摘要:

本研究通過分子束外延技術(shù)在石墨烯表面制備了一層厚度約為3nm的氧化鐵(FeOx)納米層氧化物薄膜。利用原位反射高能電子衍射(RHEED)技術(shù)實時跟蹤了納米層氧化物薄膜的生長過程,并分析了不同生長溫度和氧氣壓力對氧化鐵薄膜的厚度和結(jié)構(gòu)的影響。結(jié)果表明,在較低的生長溫度和氧氣壓力下,所生長的納米層氧化物薄膜具有單晶結(jié)構(gòu),而在較高的生長溫度和氧氣壓力下,所生長的薄膜結(jié)構(gòu)轉(zhuǎn)變?yōu)槎嗑ЫY(jié)構(gòu),厚度也更加薄。該研究為利用分子束外延技術(shù)制備石墨烯表面納米層氧化物薄膜提供了指導(dǎo)。

關(guān)鍵詞:石墨烯;氧化鐵;納米層氧化物薄膜;分子束外延;原位反射高能電子衍射;生長溫度;氧氣壓力。

Abstract:

Inthisstudy,aFeOxnanometricoxidefilmwithathicknessofabout3nmwaspreparedonthesurfaceofgraphenebymolecularbeamepitaxytechnology.Real-timemonitoringofthegrowthprocessofthenanometricoxidefilmwascarriedoutbyin-situreflectionhigh-energyelectrondiffraction(RHEED)technology,andtheeffectofdifferentgrowthtemperaturesandoxygenpressuresonthethicknessandstructureoftheFeOxfilmwasanalyzed.Theresultsshowedthatatlowergrowthtemperaturesandoxygenpressures,thegrownnanometricoxidefilmhadasinglecrystalstructure,whileathighergrowthtemperaturesandoxygenpressures,thefilmstructuretransformedintoapolycrystallinestructureandthethicknessbecamethinner.Thisstudyprovidesguidanceforthepreparationofnanometricoxidefilmsonthesurfaceofgrapheneusingmolecularbeamepitaxytechnology.

Keywords:graphene;ironoxide,nanometricoxidefilm;molecularbeamepitaxy;in-situreflectionhigh-energyelectrondiffraction;growthtemperature;oxygenpressureInrecentyears,graphenehasbeenextensivelyexploredforitsuniquepropertiesinthefieldofelectronics,optoelectronics,andenergystorage.However,pristinegraphenedoesnotpossessanybandgap,whichlimitsitsapplicationsinelectronicdevices.Toovercomethischallenge,variousapproacheshavebeenproposed,includingsurfacefunctionalizationwithmetaloxides.

Ironoxideisoneofthemostpromisingcandidatesforfunctionalizinggrapheneduetoitsmagneticandcatalyticproperties.Nanometricoxidefilmsofironhavebeensuccessfullypreparedonthesurfaceofgrapheneusingmolecularbeamepitaxy(MBE)technology.MBEisatechniquethatallowsfortheprecisedepositionofatomsormoleculesonasubstrate,resultinginahighlycontrolledthinfilmgrowth.

Inthisstudy,thegrowthofnanometricoxidefilmsofironongraphenewasinvestigatedusingin-situreflectionhigh-energyelectrondiffraction(RHEED)andX-raydiffraction(XRD).Thegrowthparameters,suchasgrowthtemperatureandoxygenpressure,werealsooptimizedfortheformationofhigh-qualityoxidefilms.

Itwasobservedthatatlowergrowthtemperaturesandloweroxygenpressures,thefilmexhibitedasinglecrystalstructureofironoxidewithathicknessofseveralnanometers.However,athighergrowthtemperaturesandoxygenpressures,thefilmstructuretransformedintoapolycrystallinestructure,andthethicknessbecamethinner.

ThisstudyprovidesusefulinsightsintothegrowthmechanismofironoxidefilmsongrapheneandcanbeusedasaguidelineforthepreparationofnanometricoxidefilmsusingMBEtechnology.Thefindingsofthisstudymayopenupnewavenuesforthedevelopmentofhigh-performanceelectronicandoptoelectronicdevicesbasedongraphene-ironoxidehybridstructuresInadditiontothegrowthmechanismofironoxidefilmsongraphene,therearepotentialapplicationsofgraphene-ironoxidehybridstructuresinvariousfieldssuchaselectronics,optoelectronics,andenergystorage.

Forelectronicapplications,graphene-ironoxidehybridstructureshaveattractedsignificantattentioninthedevelopmentofhigh-performancesensors.Ironoxidenanoparticlescanbedepositedongraphenesheetsusingvarioustechniquessuchashydrothermalsynthesis,sol-gel,andchemicalvapordeposition.Thehybridstructurecandetectgasmoleculesandpollutantswithhighsensitivityduetothehighsurfacearea-to-volumeratiooftheironoxidenanoparticlesandtheexcellentelectricalconductivityofgraphene.

Inoptoelectronicapplications,graphene-ironoxidehybridstructureshavebeenexploredforthedevelopmentofphotocatalystsandsolarcells.Ironoxidenanoparticlescanactasaphotocatalysttogeneratereactiveoxygenspeciesundervisiblelight,whichcaneffectivelydegradeorganicpollutants.Theincorporationofgrapheneinthehybridstructurecanenhancethechargeseparationandtransfer,leadingtoimprovedphotocatalyticperformance.Moreover,graphene-ironoxidehybridstructurescanalsobeusedasanelectrodeindye-sensitizedsolarcells,whichhaveshownpromisingphotovoltaicperformance.

Additionally,graphene-ironoxidehybridstructureshavebeeninvestigatedforenergystorageapplications.Ironoxidenanoparticlescanbecoatedongraphenesheetstoformacompositeelectrode,whichhasshownhighcapacityandgoodcyclingstabilityasananodematerialinlithium-ionbatteries.Thehybridstructurecanalsobeusedasasupercapacitorelectrodeduetothehighsurfaceareaoftheironoxidenanoparticlesandtheexcellentelectricalconductivityofgraphene.

Inconclusion,theunderstandingofthegrowthmechanismofironoxidefilmsongrapheneisessentialforthepreparationofnanometricoxidefilmsusingMBEtechnology.Thegraphene-ironoxidehybridstructurehasshownpromisingpotentialinvariousfieldssuchaselectronics,optoelectronics,andenergystorage.FurtherresearchinthisareacanleadtothedevelopmentofadvancedmaterialsanddeviceswithimprovedperformanceandfunctionalityOneofthemostimportantpropertiesofgrapheneisitshighelectricalconductivity,whichmakesitahighlyattractivematerialforvariouselectronicandphotonicapplications.Theelectricalconductivityofgrapheneisdeterminedbyitsuniqueelectronicbandstructureanditshighlyefficientchargetransportproperties.Graphenepossessesazerobandgap,whichmeansthatitbehaveslikeametalintermsofitselectronicproperties.Thismakesithighlyconductiveforbothelectronsandholes,leadingtoahighelectricalconductivity.

Thehighelectricalconductivityofgrapheneisduetoitsuniqueelectronicstructure,whichconsistsoftwo-dimensionalgraphenesheetsthatareheldtogetherbycovalentbonds.Thebondsbetweenthecarbonatomsingrapheneareverystrong,allowingelectronstomovefreelythroughoutthesheet.Thisallowsforefficientchargetransport,whichisessentialforhighelectricalconductivity.

Inadditiontoitsuniqueelectronicstructure,graphenealsopossessesahighsurfacearea,whichenablesittointeractwithalargenumberofchargecarriers.Thisleadstoahighdensityofstates,whichinturnenhancesitselectricalconductivity.Furthermore,graphenepossessesexcellentthermalconductivity,whichalsocontributestoitsoverallelectricalproperties.

Graphene'shighelectricalconductivityhasledtonumerousapplicationsinthefieldofelectronicsandoptoelectronics.Forexample,graphenehasbeenusedasaconductiveelectrodeinorganicsolarcells,leadingtoincreasedefficiencyofthecells.Additionally,graphenehasbeenusedasatransparentelectrodeinflexibledisplays,leadingtoimprovedopticalpropertiesandflexibility.Graphenehasalsobeenusedinelectronicdevicessuchasfield-effecttransistors,whichdemonstrateexcellentelectricalperformanceduetographene'shighconductivity.

Inrecentyears,researchhasbeenfocusedonfurtherenhancingtheelectricalconductivityofgraphenebyfunctionalizingitssurfacewithvariouschemicalmoieties.Thisapproachhasbeensuccessfulinimprovingtheelectricalpropertiesofgrapheneandhasledtothedevelopmentofhighlyconductivegraphene-basedmaterials.Additionally,graphenehasbeencombinedwithothermaterialssuchasmetalsandmetaloxidestocreategraphene-basedcomposites,whichalso

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論