陜西省藍田縣達標名校2023年中考數(shù)學模擬預測題含解析_第1頁
陜西省藍田縣達標名校2023年中考數(shù)學模擬預測題含解析_第2頁
陜西省藍田縣達標名校2023年中考數(shù)學模擬預測題含解析_第3頁
陜西省藍田縣達標名校2023年中考數(shù)學模擬預測題含解析_第4頁
陜西省藍田縣達標名校2023年中考數(shù)學模擬預測題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,將甲、乙、丙、丁四個小正方形中的一個剪掉,使余下的部分不能圍成一個正方體,剪掉的這個小正方形是A.甲 B.乙C.丙 D.丁2.小紅上學要經(jīng)過兩個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望上學時經(jīng)過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.3.如圖,點F是ABCD的邊AD上的三等分點,BF交AC于點E,如果△AEF的面積為2,那么四邊形CDFE的面積等于()A.18 B.22 C.24 D.464.二次函數(shù)y=(2x-1)2+2的頂點的坐標是()A.(1,2) B.(1,-2) C.(,2)

D.(-,-2)5.如圖,已知,那么下列結(jié)論正確的是()A. B. C. D.6.若代數(shù)式2x2+3x﹣1的值為1,則代數(shù)式4x2+6x﹣1的值為()A.﹣3 B.﹣1 C.1 D.37.如圖所示,是用直尺和圓規(guī)作一個角等于已知角的示意圖,則說明∠A′O′B′=∠AOB的依據(jù)是()A.SAS B.SSS C.AAS D.ASA8.如圖,在平面直角坐標系xOy中,△由△繞點P旋轉(zhuǎn)得到,則點P的坐標為()A.(0,1) B.(1,-1) C.(0,-1) D.(1,0)9.已知二次函數(shù)的圖象如圖所示,若,是這個函數(shù)圖象上的三點,則的大小關(guān)系是()A. B. C. D.10.下列各數(shù)中比﹣1小的數(shù)是()A.﹣2 B.﹣1 C.0 D.1二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知P是正方形ABCD對角線BD上一點,且BP=BC,則∠ACP度數(shù)是_____度.12.如圖,為了測量鐵塔AB高度,在離鐵塔底部(點B)60米的C處,測得塔頂A的仰角為30°,那么鐵塔的高度AB=________米.13.如圖,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一點D,使AD=4,將線段AD繞點A按順時針方向旋轉(zhuǎn),點D的對應(yīng)點是點P,連接BP,取BP的中點F,連接CF,當點P旋轉(zhuǎn)至CA的延長線上時,CF的長是_____,在旋轉(zhuǎn)過程中,CF的最大長度是_____.14.已知兩圓內(nèi)切,半徑分別為2厘米和5厘米,那么這兩圓的圓心距等于_____厘米.15.解不等式組請結(jié)合題意填空,完成本題的解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在數(shù)軸上表示出來;(4)原不等式組的解集為___________.16.如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,-3),動點P在拋物線上.b=_________,c=_________,點B的坐標為_____________;(直接填寫結(jié)果)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.17.如圖,將三角形AOC繞點O順時針旋轉(zhuǎn)120°得三角形BOD,已知OA=4,OC=1,那么圖中陰影部分的面積為_____.(結(jié)果保留π)三、解答題(共7小題,滿分69分)18.(10分)如圖1,在四邊形ABCD中,AB=AD.∠B+∠ADC=180°,點E,F(xiàn)分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系.圖1圖2圖3(1)思路梳理將△ABE繞點A逆時針旋轉(zhuǎn)至△ADG,使AB與AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即點F,D,G三點共線.易證△AFG,故EF,BE,DF之間的數(shù)量關(guān)系為;(2)類比引申如圖2,在圖1的條件下,若點E,F(xiàn)由原來的位置分別變到四邊形ABCD的邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.(3)聯(lián)想拓展如圖3,在△ABC中,∠BAC=90°,AB=AC,點D,E均在邊BC上,且∠DAE=45°.若BD=1,EC=2,則DE的長為.19.(5分)如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點.求反比例函數(shù)的表達式及點B的坐標;在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.20.(8分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=

(x>0)的圖象交于A(2,﹣1),B(,n)兩點,直線y=2與y軸交于點C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求△ABC的面積.21.(10分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點A順時針旋轉(zhuǎn)α度(0°≤α≤180°)(1)半圓的直徑落在對角線AC上時,如圖所示,半圓與AB的交點為M,求AM的長;(2)半圓與直線CD相切時,切點為N,與線段AD的交點為P,如圖所示,求劣弧AP的長;(3)在旋轉(zhuǎn)過程中,半圓弧與直線CD只有一個交點時,設(shè)此交點與點C的距離為d,直接寫出d的取值范圍.22.(10分)計算:﹣4cos45°+()﹣1+|﹣2|.23.(12分)如圖,在平面直角坐標系xOy中,已知點A(3,0),點B(0,3),點O為原點.動點C、D分別在直線AB、OB上,將△BCD沿著CD折疊,得△B'CD.(Ⅰ)如圖1,若CD⊥AB,點B'恰好落在點A處,求此時點D的坐標;(Ⅱ)如圖2,若BD=AC,點B'恰好落在y軸上,求此時點C的坐標;(Ⅲ)若點C的橫坐標為2,點B'落在x軸上,求點B'的坐標(直接寫出結(jié)果即可).24.(14分)2019年1月,溫州軌道交通線正式運營,線有以下4種購票方式:A.二維碼過閘B.現(xiàn)金購票C.市名卡過閘D.銀聯(lián)閃付某興趣小組為了解最受歡迎的購票方式,隨機調(diào)查了某區(qū)的若干居民,得到如圖所示的統(tǒng)計圖,已知選擇方式D的有200人,求選擇方式A的人數(shù).小博和小雅對A,B,C三種購票方式的喜愛程度相同,隨機選取一種方式購票,求他們選擇同一種購票方式的概率.(要求列表或畫樹狀圖).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】解:將如圖所示的圖形剪去一個小正方形,使余下的部分不能圍成一個正方體,編號為甲乙丙丁的小正方形中剪去的是丁.故選D.2、C【解析】

列舉出所有情況,看每個路口都是綠燈的情況數(shù)占總情況數(shù)的多少即可得.【詳解】畫樹狀圖如下,共4種情況,有1種情況每個路口都是綠燈,所以概率為.故選C.3、B【解析】

連接FC,先證明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根據(jù)點F是□ABCD的邊AD上的三等分點得出S△FCD=2S△AFC,四邊形CDFE的面積=S△FCD+S△EFC,再代入△AEF的面積為2即可求出四邊形CDFE的面積.【詳解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF與△EFC高相等,∴S△EFC=3S△AEF,∵點F是□ABCD的邊AD上的三等分點,∴S△FCD=2S△AFC,∵△AEF的面積為2,∴四邊形CDFE的面積=S△FCD+S△EFC=16+6=22.故選B.【點睛】本題考查了相似三角形的應(yīng)用與三角形的面積,解題的關(guān)鍵是熟練的掌握相似三角形的應(yīng)用與三角形的面積的相關(guān)知識點.4、C【解析】試題分析:二次函數(shù)y=(2x-1)+2即的頂點坐標為(,2)考點:二次函數(shù)點評:本題考查二次函數(shù)的頂點坐標,考生要掌握二次函數(shù)的頂點式與其頂點坐標的關(guān)系5、A【解析】

已知AB∥CD∥EF,根據(jù)平行線分線段成比例定理,對各項進行分析即可.【詳解】∵AB∥CD∥EF,∴.故選A.【點睛】本題考查平行線分線段成比例定理,找準對應(yīng)關(guān)系,避免錯選其他答案.6、D【解析】

由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1計算可得.【詳解】解:∵2x2+1x﹣1=1,∴2x2+1x=2,則4x2+6x﹣1=2(2x2+1x)﹣1=2×2﹣1=4﹣1=1.故本題答案為:D.【點睛】本題主要考查代數(shù)式的求值,運用整體代入的思想是解題的關(guān)鍵.7、B【解析】

由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根據(jù)SSS可得到三角形全等.【詳解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D',故選:B.【點睛】本題主要考查了全等三角形的判定,關(guān)鍵是掌握全等三角形的判定定理.8、B【解析】試題分析:根據(jù)網(wǎng)格結(jié)構(gòu),找出對應(yīng)點連線的垂直平分線的交點即為旋轉(zhuǎn)中心.試題解析:由圖形可知,對應(yīng)點的連線CC′、AA′的垂直平分線過點(0,-1),根據(jù)旋轉(zhuǎn)變換的性質(zhì),點(1,-1)即為旋轉(zhuǎn)中心.故旋轉(zhuǎn)中心坐標是P(1,-1)故選B.考點:坐標與圖形變化—旋轉(zhuǎn).9、A【解析】

先求出二次函數(shù)的對稱軸,結(jié)合二次函數(shù)的增減性即可判斷.【詳解】解:二次函數(shù)的對稱軸為直線,∵拋物線開口向下,∴當時,y隨x增大而增大,∵,∴故答案為:A.【點睛】本題考查了根據(jù)自變量的大小,比較函數(shù)值的大小,解題的關(guān)鍵是熟悉二次函數(shù)的增減性.10、A【解析】

根據(jù)兩個負數(shù)比較大小,絕對值大的負數(shù)反而小,可得答案.【詳解】解:A、﹣2<﹣1,故A正確;B、﹣1=﹣1,故B錯誤;C、0>﹣1,故C錯誤;D、1>﹣1,故D錯誤;故選:A.【點睛】本題考查了有理數(shù)大小比較,利用了正數(shù)大于0,0大于負數(shù),注意兩個負數(shù)比較大小,絕對值大的負數(shù)反而小.二、填空題(共7小題,每小題3分,滿分21分)11、22.5【解析】∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=(180°-45°)=67.5°,∴∠ACP度數(shù)是67.5°-45°=22.5°12、20【解析】

在Rt△ABC中,直接利用tan∠ACB=tan30°==即可.【詳解】在Rt△ABC中,tan∠ACB=tan30°==,BC=60,解得AB=20.故答案為20.【點睛】本題考查的知識點是解三角形的實際應(yīng)用,解題的關(guān)鍵是熟練的掌握解三角形的實際應(yīng)用.13、,+2.【解析】

當點P旋轉(zhuǎn)至CA的延長線上時,CP=20,BC=2,利用勾股定理求出BP,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半,可得CF的長;取AB的中點M,連接MF和CM,根據(jù)直角三角形斜邊上的中線等于斜邊的一半,可得CM的長,利用三角形中位線定理,可得FM的長,再根據(jù)當且僅當M、F、C三點共線且M在線段CF上時CF最大,即可得到結(jié)論.【詳解】當點P旋轉(zhuǎn)至CA的延長線上時,如圖2.∵在直角△BCP中,∠BCP=90°,CP=AC+AP=6+4=20,BC=2,∴BP=,∵BP的中點是F,∴CF=BP=.取AB的中點M,連接MF和CM,如圖2.∵在直角△ABC中,∠ACB=90°,AC=6,BC=2,∴AB=2.∵M為AB中點,∴CM=AB=,∵將線段AD繞點A按順時針方向旋轉(zhuǎn),點D的對應(yīng)點是點P,∴AP=AD=4,∵M為AB中點,F(xiàn)為BP中點,∴FM=AP=2.當且僅當M、F、C三點共線且M在線段CF上時CF最大,此時CF=CM+FM=+2.故答案為,+2.【點睛】考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了直角三角形斜邊上的中線等于斜邊的一半以及勾股定理.根據(jù)題意正確畫出對應(yīng)圖形是解題的關(guān)鍵.14、1【解析】

由兩圓的半徑分別為2和5,根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系和兩圓位置關(guān)系求得圓心距即可.【詳解】解:∵兩圓的半徑分別為2和5,兩圓內(nèi)切,∴d=R﹣r=5﹣2=1cm,故答案為1.【點睛】此題考查了圓與圓的位置關(guān)系.解題的關(guān)鍵是掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系.15、(1)x<1;(2)x≥﹣2;(1)見解析;(4)﹣2≤x<1;【解析】

(1)先移項,再合并同類項,求出不等式1的解集即可;(2)先去分母、移項,再合并同類項,求出不等式2的解集即可;(1)把兩不等式的解集在數(shù)軸上表示出來即可;(4)根據(jù)數(shù)軸上不等式的解集,求出其公共部分即可.【詳解】(1)解不等式①,得:x<1;(2)解不等式②,得:x≥﹣2;(1)把不等式①和②的解集在數(shù)軸上表示出來如下:(4)原不等式組的解集為:﹣2≤x<1,故答案為:x<1、x≥﹣2、﹣2≤x<1.【點睛】本題主要考查一元一次不等式組的解法及在數(shù)軸上的表示。16、(1),,(-1,0);(2)存在P的坐標是或;(1)當EF最短時,點P的坐標是:(,)或(,)【解析】

(1)將點A和點C的坐標代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標;(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據(jù)垂線段最短可求得點D的縱坐標,從而得到點P的縱坐標,然后由拋物線的解析式可求得點P的坐標.【詳解】解:(1)∵將點A和點C的坐標代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點B的坐標為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當∠ACP1=90°.由(1)可知點A的坐標為(1,0).設(shè)AC的解析式為y=kx﹣1.∵將點A的坐標代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯(lián)立解得,(舍去),∴點P1的坐標為(1,﹣4).②當∠P2AC=90°時.設(shè)AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯(lián)立解得=﹣2,=1(舍去),∴點P2的坐標為(﹣2,5).綜上所述,P的坐標是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據(jù)垂線段最短,可得當OD⊥AC時,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點.又∵DF∥OC,∴DF=OC=,∴點P的縱坐標是,∴,解得:x=,∴當EF最短時,點P的坐標是:(,)或(,).17、5π【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積,利用扇形的面積公式計算即可求解.【詳解】∵△AOC≌△BOD,∴陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積5π.故答案為:5π.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)以及扇形的面積公式,正確理解:陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)△AFE.EF=BE+DF.(2)BF=DF-BE,理由見解析;(3)【解析】試題分析:(1)先根據(jù)旋轉(zhuǎn)得:計算即點共線,再根據(jù)SAS證明△AFE≌△AFG,得EF=FG,可得結(jié)論EF=DF+DG=DF+AE;

(2)如圖2,同理作輔助線:把△ABE繞點A逆時針旋轉(zhuǎn)至△ADG,證明△EAF≌△GAF,得EF=FG,所以EF=DF?DG=DF?BE;

(3)如圖3,同理作輔助線:把△ABD繞點A逆時針旋轉(zhuǎn)至△ACG,證明△AED≌△AEG,得,先由勾股定理求的長,從而得結(jié)論.試題解析:(1)思路梳理:如圖1,把△ABE繞點A逆時針旋轉(zhuǎn)至△ADG,可使AB與AD重合,即AB=AD,由旋轉(zhuǎn)得:∠ADG=∠A=,BE=DG,∠DAG=∠BAE,AE=AG,∴∠FDG=∠ADF+∠ADG=+=,即點F.D.

G共線,∵四邊形ABCD為矩形,∴∠BAD=,∵∠EAF=,∴∴∴在△AFE和△AFG中,∵∴△AFE≌△AFG(SAS),∴EF=FG,∴EF=DF+DG=DF+AE;故答案為:△AFE,EF=DF+AE;(2)類比引申:如圖2,EF=DF?BE,理由是:把△ABE繞點A逆時針旋轉(zhuǎn)至△ADG,可使AB與AD重合,則G在DC上,由旋轉(zhuǎn)得:BE=DG,∠DAG=∠BAE,AE=AG,∵∠BAD=,∴∠BAE+∠BAG=,∵∠EAF=,∴∠FAG=?=,∴∠EAF=∠FAG=,在△EAF和△GAF中,∵∴△EAF≌△GAF(SAS),∴EF=FG,∴EF=DF?DG=DF?BE;(3)聯(lián)想拓展:如圖3,把△ABD繞點A逆時針旋轉(zhuǎn)至△ACG,可使AB與AC重合,連接EG,由旋轉(zhuǎn)得:AD=AG,∠BAD=∠CAG,BD=CG,∵∠BAC=,AB=AC,∴∠B=∠ACB=,∴∠ACG=∠B=,∴∠BCG=∠ACB+∠ACG=+=,∵EC=2,CG=BD=1,由勾股定理得:∵∠BAD=∠CAG,∠BAC=,∴∠DAG=,∵∠BAD+∠EAC=,∴∠CAG+∠EAC==∠EAG,∴∠DAE=,∴∠DAE=∠EAG=,∵AE=AE,∴△AED≌△AEG,∴19、(1),;(2)P,.【解析】試題分析:(1)由點A在一次函數(shù)圖象上,結(jié)合一次函數(shù)解析式可求出點A的坐標,再由點A的坐標利用待定系數(shù)法即可求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點B坐標;(2)作點B作關(guān)于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,連接PB.由點B、D的對稱性結(jié)合點B的坐標找出點D的坐標,設(shè)直線AD的解析式為y=mx+n,結(jié)合點A、D的坐標利用待定系數(shù)法求出直線AD的解析式,令直線AD的解析式中y=0求出點P的坐標,再通過分割圖形結(jié)合三角形的面積公式即可得出結(jié)論.試題解析:(1)把點A(1,a)代入一次函數(shù)y=-x+4,得:a=-1+4,解得:a=3,∴點A的坐標為(1,3).把點A(1,3)代入反比例函數(shù)y=,得:3=k,∴反比例函數(shù)的表達式y(tǒng)=,聯(lián)立兩個函數(shù)關(guān)系式成方程組得:,解得:,或,∴點B的坐標為(3,1).(2)作點B作關(guān)于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,連接PB,如圖所示.∵點B、D關(guān)于x軸對稱,點B的坐標為(3,1),∴點D的坐標為(3,-1).設(shè)直線AD的解析式為y=mx+n,把A,D兩點代入得:,解得:,∴直線AD的解析式為y=-2x+1.令y=-2x+1中y=0,則-2x+1=0,解得:x=,∴點P的坐標為(,0).S△PAB=S△ABD-S△PBD=BD?(xB-xA)-BD?(xB-xP)=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)=.考點:1.反比例函數(shù)與一次函數(shù)的交點問題;2.待定系數(shù)法求一次函數(shù)解析式;3.軸對稱-最短路線問題.20、(1)y=2x﹣5,;(2).【解析】

試題分析:(1)把A坐標代入反比例解析式求出m的值,確定出反比例解析式,再將B坐標代入求出n的值,確定出B坐標,將A與B坐標代入一次函數(shù)解析式求出k與b的值,即可確定出一次函數(shù)解析式;(2)用矩形面積減去周圍三個小三角形的面積,即可求出三角形ABC面積.試題解析:(1)把A(2,﹣1)代入反比例解析式得:﹣1=,即m=﹣2,∴反比例解析式為,把B(,n)代入反比例解析式得:n=﹣4,即B(,﹣4),把A與B坐標代入y=kx+b中得:,解得:k=2,b=﹣5,則一次函數(shù)解析式為y=2x﹣5;(2)如圖,S△ABC=考點:反比例函數(shù)與一次函數(shù)的交點問題;一次函數(shù)及其應(yīng)用;反比例函數(shù)及其應(yīng)用.21、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】

(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據(jù)相似三角形的性質(zhì)可求出AM的長度;(2)連接OP、ON,過點O作OG⊥AD于點G,則四邊形DGON為矩形,進而可得出DG、AG的長度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,進而可得出△AOP為等邊三角形,再利用弧長公式即可求出劣弧AP的長;(3)由(2)可知:△AOP為等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OG、DN的長度,進而可得出CN的長度,畫出點B′在直線CD上的圖形,在Rt△AB′D中(點B′在點D左邊),利用勾股定理可求出B′D的長度進而可得出CB′的長度,再結(jié)合圖形即可得出:半圓弧與直線CD只有一個交點時d的取值范圍.【詳解】(2)在圖2中,連接B′M,則∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;(2)在圖3中,連接OP、ON,過點O作OG⊥AD于點G,∵半圓與直線CD相切,∴ON⊥DN,∴四邊形DGON為矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP為等邊三角形,∴==π.(3)由(2)可知:△AOP為等邊三角形,∴DN=GO=OA=,∴CN=CD+DN=4+.當點B′在直線CD上時,如圖4所示,在Rt△AB′D中(點B′在點D左邊),AB′=4,AD=3,∴B′D==,∴CB′=4-.∵AB′為直徑,∴∠ADB′=90°,∴當點B′在點D右邊時,半圓交直線CD于點D、B′.∴當半圓弧與直線CD只有一個交點時,4-≤d<4或d=4+.【點睛】本題考查了相似三角形的判定與性質(zhì)、矩形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理以及切線的性質(zhì),解題的關(guān)鍵是:(2)利用相似三角形的性質(zhì)求出AM的長度;(2)通過解直角三角形找出∠OAG=60°;(3)依照題意畫出圖形,利用數(shù)形結(jié)合求出d的取值范圍.22、4【解析】分析:代入45°角的余弦函數(shù)值,結(jié)合“負整數(shù)指數(shù)冪的意義”和“二次根式的相關(guān)運算法則”進行計算即可.詳解:原式=.點睛:熟記“特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪的意義:(為正

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論