版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Whatisageneticalgorithm?
Methodsofrepresentation
Methodsofselection
Methodsofchange
Otherproblem-solvingtechniques
Conciselystated,ageneticalgorithm(orGAforshort)isaprogrammingtechniquethatmimicsbiologicalevolutionasaproblem-solvingstrategy.Givenaspecificproblemtosolve,theinputtotheGAisasetofpotentialsolutionstothatproblem,encodedinsomefashion,andametriccalledfitnessfunctionthatallowseachcandidatetobequantitativelyevaluated.Thesecandidatesmaybesolutionsalreadyknowntowork,withtheaimoftheGAbeingtoimprovethem,butmoreoftentheyaregeneratedatrandom.
TheGAthenevaluateseachcandidateaccordingtothefitnessfunction.Inapoolofrandomlygeneratedcandidates,ofcourse,mostwillnotworkatall,andthesewillbedeleted.However,purelybychance,afewmayholdpromise-theymayshowactivity,evenifonlyweakandimperfectactivity,towardsolvingtheproblem.
Thesepromisingcandidatesarekeptandallowedtoreproduce.Multiplecopiesaremadeofthem,butthecopiesarenotperfect;randomchangesareintroducedduringthecopyingprocess.Thesedigitaloffspringthengoontothenextgeneration,forminganewpoolofcandidatesolutions,andaresubjectedtoasecondroundoffitnessevaluation.Thosecandidatesolutionswhichwereworsened,ormadenobetter,bythechangestotheircodeareagaindeleted;butagain,purelybychance,therandomvariationsintroducedintothepopulationmayhaveimprovedsomeindividuals,makingthemintobetter,morecompleteormoreefficientsolutionstotheproblemathand.Againthesewinningindividualsareselectedandcopiedoverintothenextgenerationwithrandomchanges,andtheprocessrepeats.Theexpectationisthattheaveragefitnessofthepopulationwillincreaseeachround,andsobyrepeatingthisprocessforhundredsorthousandsofrounds,verygoodsolutionstotheproblemcanbediscovered.
Asastonishingandcounterintuitiveasitmayseemtosome,geneticalgorithmshaveproventobeanenormouslypowerfulandsuccessfulproblem-solvingstrategy,dramaticallydemonstratingthepowerofevolutionaryprinciples.Geneticalgorithmshavebeenusedinawidevarietyoffieldstoevolvesolutionstoproblemsasdifficultasormoredifficultthanthosefacedbyhumandesigners.Moreover,thesolutionstheycomeupwithareoftenmoreefficient,moreelegant,ormorecomplexthananythingcomparableahumanengineerwouldproduce.Insomecases,geneticalgorithmshavecomeupwithsolutionsthatbaffletheprogrammerswhowrotethealgorithmsinthefirstplace!
Methodsofrepresentation
Beforeageneticalgorithmcanbeputtoworkonanyproblem,amethodisneededtoencodepotentialsolutionstothatprobleminaformthatacomputeicanprocess.Onecommonapproachistoencodesolutionsasbinarystrings:sequencesof1,sand0's,wherethedigitateachpositionrepresentsthevalueofsomeaspectofthesolution.Another,similarapproachistoencodesolutionsasarraysofintegersordecimalnumbers,witheachpositionagainrepresentingsomeparticularaspectofthesolution.Thisapproachallowsforgreaterprecisionandcomplexitythanthecomparativelyrestrictedmethodofusingbinarynumbersonlyandoften"isintuitivelyclosertotheproblemspace"(FlemingandPurshouse2002,p.1228).
Thistechniquewasused,forexample,intheworkofSteffenSchulze-Kremer,whowroteageneticalgorithmtopredictthethree-dimensionalstructureofaproteinbasedonthesequenceofaminoacidsthatgointoit(Mitchell1996,p.62).Schulze-Kremer'sGAusedreal-valuednumberstorepresenttheso-called"torsionangles"betweenthepeptidebondsthatconnectaminoacids.(Aproteinismadeupofasequenceofbasicbuildingblockscalledaminoacids,whicharejoinedtogetherlikethelinksinachain.Oncealltheaminoacidsarelinked,theproteinfoldsupintoacomplexthree-dimensionalshapebasedonwhichaminoacidsattracteachotherandwhichonesrepeleachother.Theshapeofaproteindeterminesitsfunction.)Geneticalgorithmsfortrainingneuralnetworksoftenusethismethodofencodingalso.
AthirdapproachistorepresentindividualsinaGAasstringsofletters,whereeachletteragainstandsforaspecificaspectofthesolution.OneexampleofthistechniqueisHiroakiKitano's"grammaticalencoding"approach,whereaGAwasputtothetaskofevolvingasimplesetofrulescalledacontext-freegrammarthatwasinturnusedtogenerateneuralnetworksforavarietyofproblems(Mitchell1996,p.74).
Thevirtueofallthreeofthesemethodsisthattheymakeiteasytodefineoperatorsthatcausetherandomchangesintheselectedcandidates:flipa0toa1orviceversa,addorsubtractfromthevalueofanumberbyarandomlychosenamount,orchangeonelettertoanother.(SeethesectiononMethodsofchangeformoredetailaboutthegeneticoperators.)Anotherstrategy,developedprincipallybyJohnKozaofStanfordUniversityandcalledgeneticprogramming,representsprogramsasbranchingdatastructurescalledtreesKozaetal.2003p.35).Inthisapproach,randomchangescanbebroughtaboutbychangingtheoperatororalteringthevalueatagivennodeinthetree,orreplacingonesubtreewithanother.
Figure1:Threesimpleprogramtreesofthekindnormallyusedingeneticprogramming.Themathematicalexpressionthateachonerepresentsisgivenunderneath.
Itisimportanttonotethatevolutionaryalgorithmsdonotneedtorepresentcandidatesolutionsasdatastringsoffixedlength.Somedorepresenttheminthisway,butothersdonot;forexample,Kitano'sgrammaticalencodingdiscussedabovecanbeefficientlyscaledtocreatelargeandcomplexneuralnetworks,andKoza'sgeneticprogrammingtreescangrowarbitrarilylargeasnecessarytosolvewhateverproblemtheyareappliedto.
Methodsofselection
Therearemanydifferenttechniqueswhichageneticalgorithmcanusetoselecttheindividualstobecopiedoverintothenextgeneration,butlistedbelowaresomeofthemostcommonmethods.
Someofthesemethodsaremutuallyexclusive,butotherscanbeandoftenareusedincombination.
ElitistselectionThemostfitmembersofeachgenerationareguaranteedtobeselected.(MostGAsdonotusepureelitism,butinsteaduseamodifiedformwherethesinglebest,orafewofthebest,individualsfromeachgenerationarecopiedintothenextgenerationjustincasenothingbetterturnsup.)
Fitness-proportionateselectionMorefitindividualsaremorelikely,butnotcertain,tobeselected.
Roulette-wheelselectionAformoffitness-proportionateselectioninwhichthechanceofanindividual'sbeingselectedisproportionaltotheamountbywhichitsfitnessisgreaterorlessthanitscompetitors'fitness.(Conceptually,thiscanberepresentedasagameofroulette-eachindividualgetsasliceofthewheel,butmorefitonesgetlargerslicesthanlessfitones.Thewheelisthenspun,andwhicheverindividual"owns"thesectiononwhichitlandseachtimeischosen.)
ScalingselectionAstheaveragefitnessofthepopulationincreases,thestrengthoftheselectivepressurealsoincreasesandthefitnessfunctionbecomesmorediscriminating.Thismethodcanbehelpfulinmakingthebestselectionlateronwhenallindividualshaverelativelyhighfitnessandonlysmalldifferencesinfitnessdistinguishonefromanother.
TournamentselectionSubgroupsofindividualsarechosenfromthelargerpopulation,andmembersofeachsubgroupcompeteagainsteachother.Onlyoneindividualfromeachsubgroupischosentoreproduce.
Rankselection:Eachindividualinthepopulationisassignedanumericalrankbasedonfitness,andselectionisbasedonthisrankingratherthanabsolutedifferencesinfitness.Theadvantageofthismethodisthatitcanpreventveryfitindividualsfromgainingdominanceearlyattheexpenseoflessfitones,whichwouldreducethepopulation'sgeneticdiversityandmighthinderattemptstofindanacceptablesolution.
GenerationalselectionTheoffspringoftheindividualsselectedfromeachgenerationbecometheentirenextgeneration.Noindividualsareretainedbetweengenerations.
Steady-stateselectionTheoffspringoftheindividualsselectedfromeachgenerationgobackintothepre-existinggenepool,replacingsomeofthelessfitmembersofthepreviousgeneration.Someindividualsareretainedbetweengenerations.
HierarchicalselectionIndividualsgothroughmultipleroundsofselectioneachgeneration.Lower-levelevaluationsarefasterandlessdiscriminating,whilethosethatsurvivetohigherlevelsareevaluatedmorerigorously.Theadvantageofthismethodisthatitreducesoverallcomputationtimebyusingfaster,lessselectiveevaluationtoweedoutthemajorityofindividualsthatshowlittleornopromise,andonlysubjectingthosewhosurvivethisinitialtesttomorerigorousandmorecomputationallyexpensivefitnessevaluation.
Methodsofchange
Onceselectionhaschosenfitindividuals,theymustberandomlyalteredinhopesofimprovingtheirfitnessforthenextgeneration.Therearetwobasicstrategiestoaccomplishthis.ThefirstandsimplestiscalledmutationJustasmutationinlivingthingschangesonegenetoanother,somutationinageneticalgorithmcausessmallalterationsatsinglepointsinanindividual'scode.
Thesecondmethodiscalledcrossoverandentailschoosingtwoindividualstoswapsegmentsoftheircode,producingartificial"offspring"thatarecombinationsoftheirparents.Thisprocessisintendedtosimulatetheanalogousprocessofrecombinationthatoccurstochromosomesduringsexualreproduction.Commonformsofcrossoverincludesingle-pointcrossoverinwhichapointofexchangeissetatarandomlocationinthetwoindividuals'genomes,ancbneindividualcontributesallitscodefrombeforethatpointandtheothercontributesallitscodefromafterthatpointtoproduceanoffspring,anduniformcrossoverinwhichthevalueatanygivenlocationintheoffspring'sgenomeiseitherthevalueofoneparent'sgenomeatthatlocationorthevalueoftheotherparent'sgenomeatthatlocation,chosenwith50/50probability.
Figure2:Crossoverandmutation.Theabovediagramsillustratetheeffectofeachofthesegeneticoperatorsonindividualsinapopulationof8-bitstrings.Theupperdiagramshowstwoindividualsundergoingsingle-pointcrossover;thepointofexchangeissetbetweenthefifthandsixthpositionsinthegenome,producinganewindividualthatisahybridofitsprogenitors.Theseconddiagramshowsanindividualundergoingmutationatposition4,changingthe0atthatpositioninitsgenometoa1.
Otherproblem-solvingtechniques
Withtheriseofartificiallifecomputingandthedevelopmentofheuristicmethods,othercomputerizedproblem-solvingtechniqueshaveemergedthatareinsomewayssimilartogeneticalgorithms.Thissectionexplainssomeofthesetechniques,inwhatwaystheyresembleGAsandinwhatwaystheydiffer.
NeuralnetworksAneuralnetwork,orneuralnetforshort,isaproblem-solvingmethodbasedonacomputermodelofhowneuronsareconnectedinthebrain.Aneuralnetworkconsistsoflayersofprocessingunitscallednodesjoinedbydirectionallinks:oneinputlayer,oneoutputlayer,andzeroormorehiddenlayersinbetween.Aninitialpatternofinputispresentedtotheinputlayeroftheneuralnetwork,andnodesthatarestimulatedthentransmitasignaltothenodesofthenextlayertowhichtheyareconnected.Ifthesumofalltheinputsenteringoneofthesevirtualneuronsishigherthanthatneuron'sso-calledactivationthreshold,thatneuronitselfactivates,andpassesonitsownsignaltoneuronsinthenextlayer.Thepatternofactivationthereforespreadsforwarduntilitreachestheoutputlayerandistherereturnedasasolutiontothepresentedinput.Justasinthenervoussystemofbiologicalorganisms,neuralnetworkslearnandfine-tunetheirperformanceovertimeviarepeatedroundsofadjustingtheirthresholdsuntiltheactualoutputmatchesthedesiredoutputforanygiveninput.Thisprocesscanbesupervisedbyahumanexperimenterormayrunautomaticallyusingalearningalgorithm(Mitchell1996,p.52).Geneticalgorithmshavebeenusedbothtobuildandtotrainneuralnetworks.
Inputlayer
Hiddenlayer
Outputlayer
Figure3:Asimplefeedforwardneuralnetwork,withoneinputlayerconsistingoffourneurons,onehiddenlayerconsistingofthreeneurons,andoneoutputlayerconsistingoffourneurons.Thenumberoneachneuronrepresentsitsactivationthreshold:itwillonlyfireifitreceivesatleastthatmanyinputs.Thediagramshowstheneuralnetworkbeingpresentedwithaninputstringandshowshowactivationspreadsforwardthroughthenetworktoproduceanoutput.
Hill-climbingSimilartogeneticalgorithms,thoughmoresystematicandlessrandom,ahill-climbingalgorithmbeginswithoneinitialsolutiontotheproblemathand,usuallychosenatrandom.Thestringisthenmutated,andifthemutationresultsinhigherfitnessforthenewsolutionthanforthepreviousone,thenewsolutioniskept;otherwise,thecurrentsolutionisretained.Thealgorithmisthenrepeateduntilnomutationcanbefoundthatcausesanincreaseinthecurrentsolution'sfitness,andthissolutionisreturnedastheresult(Kozaetal.2003,p.59).(Tounderstandwherethenameofthistechniquecomesfrom,imaginethatthespaceofallpossiblesolutionstoagivenproblemisrepresentedasathree-dimensionalcontourlandscape.Agivensetofcoordinatesonthatlandscaperepresentsoneparticularsolution.Thosesolutionsthatarebetterarehigherinaltitude,forminghillsandpeaks;thosethatareworsearelowerinaltitude,formingvalleys.A"hill-climber"isthenanalgorithmthatstartsoutatagivenpointonthelandscapeandmovesinexorablyuphill.)Hill-climbingiswhatisknownasagreedyalgorithm,meaningitalwaysmakesthebestchoiceavailableateachstepinthehopethattheoverallbestresultcanbeachievedthisway.Bycontrast,methodssuchasgeneticalgorithmsandsimulatedannealing,discussedbelow,arenotgreedy;thesemethodssometimesmakesuboptimalchoicesinthehopesthattheywillleadtobettersolutionslateron.
SimulatedannealingAnotheroptimizationtechniquesimilartoevolutionaryalgorithmsis
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度大數(shù)據(jù)中心運營維護合同
- 2024年建筑工程設(shè)計與咨詢合同
- 2024年度航空公司機票代理合同
- 2024年度環(huán)保工程與技術(shù)咨詢合同
- 幼兒食品課件教學(xué)課件
- 美術(shù)課件價格教學(xué)課件
- 尿道異物課件教學(xué)課件
- 2024年塑料纖維生產(chǎn)加工許可合同
- 2024年建筑人才中介服務(wù)協(xié)議
- 2024年度南京市存量房購買合同
- GB/T 28054-2023鋼質(zhì)無縫氣瓶集束裝置
- 2023年度武漢房地產(chǎn)市場報告2024.1.12
- 新人教版九年級下數(shù)學(xué)27-1《圖形的相似》課件
- 高考模擬作文“相信與懷疑”導(dǎo)寫及范文
- 荔枝包裝工藝設(shè)計
- 浙江省9+1高中聯(lián)盟2022-2023學(xué)年高一上學(xué)期11月期中考物理試題(解析版)
- 政府?dāng)?shù)據(jù)信息保密協(xié)議范本
- 聚酯生產(chǎn)技術(shù) 聚酯工藝流程介紹
- 關(guān)于日本動漫介紹ppt
- 四年級除法豎式計算題500道
- 質(zhì)量保證體系范文(必備14篇)
評論
0/150
提交評論