2022-2023學(xué)年黑龍江省哈爾濱市南崗區(qū)第三中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2022-2023學(xué)年黑龍江省哈爾濱市南崗區(qū)第三中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2022-2023學(xué)年黑龍江省哈爾濱市南崗區(qū)第三中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2022-2023學(xué)年黑龍江省哈爾濱市南崗區(qū)第三中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2022-2023學(xué)年黑龍江省哈爾濱市南崗區(qū)第三中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)(,且)在區(qū)間上的值域?yàn)?,則()A. B. C.或 D.或42.若執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.43.已知復(fù)數(shù),(為虛數(shù)單位),若為純虛數(shù),則()A. B.2 C. D.4.在菱形中,,,,分別為,的中點(diǎn),則()A. B. C.5 D.5.為虛數(shù)單位,則的虛部為()A. B. C. D.6.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.27.某校為提高新入聘教師的教學(xué)水平,實(shí)行“老帶新”的師徒結(jié)對(duì)指導(dǎo)形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導(dǎo),現(xiàn)選出3位老教師負(fù)責(zé)指導(dǎo)5位新入聘教師,則不同的師徒結(jié)對(duì)方式共有()種.A.360 B.240 C.150 D.1208.已知函數(shù),若,則的值等于()A. B. C. D.9.的展開式中的一次項(xiàng)系數(shù)為()A. B. C. D.10.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.1711.三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)、黃實(shí),利用,化簡(jiǎn),得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為()A. B. C. D.12.在直角坐標(biāo)系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點(diǎn)P,使得|PA|=2|PB|,則正實(shí)數(shù)m的最小值是()A. B.3 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將函數(shù)的圖像向右平移個(gè)單位,得到函數(shù)的圖像,則函數(shù)在區(qū)間上的值域?yàn)開_________.14.運(yùn)行下面的算法偽代碼,輸出的結(jié)果為_____.15.在的二項(xiàng)展開式中,x的系數(shù)為________.(用數(shù)值作答)16.已知,,,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)若過點(diǎn)的直線與交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.18.(12分)設(shè)函數(shù)f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…為自然對(duì)數(shù)的底數(shù).(Ⅰ)討論f(x)的單調(diào)性;(Ⅱ)證明:當(dāng)x>1時(shí),g(x)>0;(Ⅲ)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.19.(12分)已知函數(shù).(1)當(dāng)時(shí),試求曲線在點(diǎn)處的切線;(2)試討論函數(shù)的單調(diào)區(qū)間.20.(12分)設(shè)數(shù)列,的各項(xiàng)都是正數(shù),為數(shù)列的前n項(xiàng)和,且對(duì)任意,都有,,,(e是自然對(duì)數(shù)的底數(shù)).(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.21.(12分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.22.(10分)已知等差數(shù)列滿足,公差,等比數(shù)列滿足,,.求數(shù)列,的通項(xiàng)公式;若數(shù)列滿足,求的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

對(duì)a進(jìn)行分類討論,結(jié)合指數(shù)函數(shù)的單調(diào)性及值域求解.【詳解】分析知,.討論:當(dāng)時(shí),,所以,,所以;當(dāng)時(shí),,所以,,所以.綜上,或,故選C.【點(diǎn)睛】本題主要考查指數(shù)函數(shù)的值域問題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側(cè)重考查數(shù)學(xué)運(yùn)算和數(shù)學(xué)抽象的核心素養(yǎng).2、D【解析】

模擬程序運(yùn)行,觀察變量值的變化,得出的變化以4為周期出現(xiàn),由此可得結(jié)論.【詳解】;如此循環(huán)下去,當(dāng)時(shí),,此時(shí)不滿足,循環(huán)結(jié)束,輸出的值是4.故選:D.【點(diǎn)睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu).解題時(shí)模擬程序運(yùn)行,觀察變量值的變化,確定程序功能,可得結(jié)論.3、C【解析】

把代入,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡(jiǎn),由實(shí)部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數(shù),∴,解得.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的除法運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.4、B【解析】

據(jù)題意以菱形對(duì)角線交點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,用坐標(biāo)表示出,再根據(jù)坐標(biāo)形式下向量的數(shù)量積運(yùn)算計(jì)算出結(jié)果.【詳解】設(shè)與交于點(diǎn),以為原點(diǎn),的方向?yàn)檩S,的方向?yàn)檩S,建立直角坐標(biāo)系,則,,,,,所以.故選:B.【點(diǎn)睛】本題考查建立平面直角坐標(biāo)系解決向量的數(shù)量積問題,難度一般.長(zhǎng)方形、正方形、菱形中的向量數(shù)量積問題,如果直接計(jì)算較麻煩可考慮用建系的方法求解.5、C【解析】

利用復(fù)數(shù)的運(yùn)算法則計(jì)算即可.【詳解】,故虛部為.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算以及復(fù)數(shù)的概念,注意復(fù)數(shù)的虛部為,不是,本題為基礎(chǔ)題,也是易錯(cuò)題.6、B【解析】

畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.7、C【解析】

可分成兩類,一類是3個(gè)新教師與一個(gè)老教師結(jié)對(duì),其他一新一老結(jié)對(duì),第二類兩個(gè)老教師各帶兩個(gè)新教師,一個(gè)老教師帶一個(gè)新教師,分別計(jì)算后相加即可.【詳解】分成兩類,一類是3個(gè)新教師與同一個(gè)老教師結(jié)對(duì),有種結(jié)對(duì)結(jié)對(duì)方式,第二類兩個(gè)老教師各帶兩個(gè)新教師,有.∴共有結(jié)對(duì)方式60+90=150種.故選:C.【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用.解題關(guān)鍵確定怎樣完成新老教師結(jié)對(duì)這個(gè)事情,是先分類還是先分步,確定方法后再計(jì)數(shù).本題中有一個(gè)平均分組問題.計(jì)數(shù)時(shí)容易出錯(cuò).兩組中每組中人數(shù)都是2,因此方法數(shù)為.8、B【解析】

由函數(shù)的奇偶性可得,【詳解】∵其中為奇函數(shù),也為奇函數(shù)∴也為奇函數(shù)∴故選:B【點(diǎn)睛】函數(shù)奇偶性的運(yùn)用即得結(jié)果,小記,定義域關(guān)于原點(diǎn)對(duì)稱時(shí)有:①奇函數(shù)±奇函數(shù)=奇函數(shù);②奇函數(shù)×奇函數(shù)=偶函數(shù);③奇函數(shù)÷奇函數(shù)=偶函數(shù);④偶函數(shù)±偶函數(shù)=偶函數(shù);⑤偶函數(shù)×偶函數(shù)=偶函數(shù);⑥奇函數(shù)×偶函數(shù)=奇函數(shù);⑦奇函數(shù)÷偶函數(shù)=奇函數(shù)9、B【解析】

根據(jù)多項(xiàng)式乘法法則得出的一次項(xiàng)系數(shù),然后由等差數(shù)列的前項(xiàng)和公式和組合數(shù)公式得出結(jié)論.【詳解】由題意展開式中的一次項(xiàng)系數(shù)為.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,應(yīng)用多項(xiàng)式乘法法則可得展開式中某項(xiàng)系數(shù).同時(shí)本題考查了組合數(shù)公式.10、C【解析】

首先根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗(yàn)證即可;【詳解】解:∵,∴當(dāng)時(shí),滿足,∴實(shí)數(shù)可以為8.故選:C【點(diǎn)睛】本題考查對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.11、A【解析】分析:設(shè)三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結(jié)論.解析:設(shè)三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內(nèi)的概率為.落在黃色圖形內(nèi)的圖釘數(shù)大約為.故選:A.點(diǎn)睛:應(yīng)用幾何概型求概率的方法建立相應(yīng)的幾何概型,將試驗(yàn)構(gòu)成的總區(qū)域和所求事件構(gòu)成的區(qū)域轉(zhuǎn)化為幾何圖形,并加以度量.(1)一般地,一個(gè)連續(xù)變量可建立與長(zhǎng)度有關(guān)的幾何概型,只需把這個(gè)變量放在數(shù)軸上即可;(2)若一個(gè)隨機(jī)事件需要用兩個(gè)變量來描述,則可用這兩個(gè)變量的有序?qū)崝?shù)對(duì)來表示它的基本事件,然后利用平面直角坐標(biāo)系就能順利地建立與面積有關(guān)的幾何概型;(3)若一個(gè)隨機(jī)事件需要用三個(gè)連續(xù)變量來描述,則可用這三個(gè)變量組成的有序數(shù)組來表示基本事件,利用空間直角坐標(biāo)系即可建立與體積有關(guān)的幾何概型.12、D【解析】

設(shè)點(diǎn),由,得關(guān)于的方程.由題意,該方程有解,則,求出正實(shí)數(shù)m的取值范圍,即求正實(shí)數(shù)m的最小值.【詳解】由題意,設(shè)點(diǎn).,即,整理得,則,解得或..故選:.【點(diǎn)睛】本題考查直線與方程,考查平面內(nèi)兩點(diǎn)間距離公式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)圖像的平移變換得到函數(shù)的解析式,再利用整體思想求函數(shù)的值域.【詳解】函數(shù)的圖像向右平移個(gè)單位得,,,.故答案為:.【點(diǎn)睛】本題考查三角函數(shù)圖像的平移變換、值域的求解,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時(shí)注意整體思想的運(yùn)用.14、【解析】

模擬程序的運(yùn)行過程知該程序運(yùn)行后計(jì)算并輸出的值,用裂項(xiàng)相消法求和即可.【詳解】模擬程序的運(yùn)行過程知,該程序運(yùn)行后執(zhí)行:.故答案為:【點(diǎn)睛】本題考查算法語句中的循環(huán)語句和裂項(xiàng)相消法求和;掌握循環(huán)體執(zhí)行的次數(shù)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.15、-40【解析】

由題意,可先由公式得出二項(xiàng)展開式的通項(xiàng),再令10-3r=1,得r=3即可得出x項(xiàng)的系數(shù)【詳解】的二項(xiàng)展開式的通項(xiàng)公式為,r=0,1,2,3,4,5,令,所以的二項(xiàng)展開式中x項(xiàng)的系數(shù)為.故答案為:-40.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,解題關(guān)鍵是靈活掌握二項(xiàng)式展開式通項(xiàng)的公式,屬于基礎(chǔ)題.16、【解析】

由已知利用同角三角函數(shù)的基本關(guān)系式可求得,的值,由兩角差的正弦公式即可計(jì)算得的值.【詳解】,,,,,,,,.故答案為:【點(diǎn)睛】本題主要考查了同角三角函數(shù)的基本關(guān)系、兩角差的正弦公式,需熟記公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】試題分析:(1)利用平方法消去參數(shù),即可得到的普通方程,兩邊同乘以利用即可得的直角坐標(biāo)方程;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入,利用韋達(dá)定理、直線參數(shù)方程的幾何意義以及三角函數(shù)的有界性可得結(jié)果.試題解析:(1)曲線的普通方程為,曲線的直角坐標(biāo)方程為;(2)設(shè)直線的參數(shù)方程為(為參數(shù))又直線與曲線:存在兩個(gè)交點(diǎn),因此.聯(lián)立直線與曲線:可得則聯(lián)立直線與曲線:可得,則即18、(Ⅰ)當(dāng)時(shí),<0,單調(diào)遞減;當(dāng)時(shí),>0,單調(diào)遞增;(Ⅱ)詳見解析;(Ⅲ).【解析】試題分析:本題考查導(dǎo)數(shù)的計(jì)算、利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學(xué)生的分析問題、解決問題的能力和計(jì)算能力.第(Ⅰ)問,對(duì)求導(dǎo),再對(duì)a進(jìn)行討論,判斷函數(shù)的單調(diào)性;第(Ⅱ)問,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而證明結(jié)論,第(Ⅲ)問,構(gòu)造函數(shù)=(),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而求解a的值.試題解析:(Ⅰ)<0,在內(nèi)單調(diào)遞減.由=0有.當(dāng)時(shí),<0,單調(diào)遞減;當(dāng)時(shí),>0,單調(diào)遞增.(Ⅱ)令=,則=.當(dāng)時(shí),>0,所以,從而=>0.(Ⅲ)由(Ⅱ),當(dāng)時(shí),>0.當(dāng),時(shí),=.故當(dāng)>在區(qū)間內(nèi)恒成立時(shí),必有.當(dāng)時(shí),>1.由(Ⅰ)有,而,所以此時(shí)>在區(qū)間內(nèi)不恒成立.當(dāng)時(shí),令=().當(dāng)時(shí),=.因此,在區(qū)間單調(diào)遞增.又因?yàn)?0,所以當(dāng)時(shí),=>0,即>恒成立.綜上,.【考點(diǎn)】導(dǎo)數(shù)的計(jì)算,利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題【名師點(diǎn)睛】本題考查導(dǎo)數(shù)的計(jì)算,利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學(xué)生的分析問題、解決問題的能力和計(jì)算能力.求函數(shù)的單調(diào)性,基本方法是求,解方程,再通過的正負(fù)確定的單調(diào)性;要證明不等式,一般證明的最小值大于0,為此要研究函數(shù)的單調(diào)性.本題中注意由于函數(shù)的極小值沒法確定,因此要利用已經(jīng)求得的結(jié)論縮小參數(shù)取值范圍.比較新穎,學(xué)生不易想到,有一定的難度.19、(1);(2)見解析【解析】

(1)對(duì)函數(shù)進(jìn)行求導(dǎo),可以求出曲線在點(diǎn)處的切線,利用直線的斜截式方程可以求出曲線的切線方程;(2)對(duì)函數(shù)進(jìn)行求導(dǎo),對(duì)實(shí)數(shù)進(jìn)行分類討論,可以求出函數(shù)的單調(diào)區(qū)間.【詳解】(1)當(dāng)時(shí),函數(shù)定義域?yàn)椋?所以切線方程為;(2)當(dāng)時(shí),函數(shù)定義域?yàn)?,在上單調(diào)遞增當(dāng)時(shí),恒成立,函數(shù)定義域?yàn)?,又在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增當(dāng)時(shí),函數(shù)定義域?yàn)?,在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增當(dāng)時(shí),設(shè)的兩個(gè)根為且,由韋達(dá)定理易知兩根均為正根,且,所以函數(shù)的定義域?yàn)?,又?duì)稱軸,且,在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增【點(diǎn)睛】本題考查了曲線切線方程的求法,考查了利用函數(shù)的導(dǎo)數(shù)討論函數(shù)的單調(diào)性問題,考查了分類思想.20、(1),(2)【解析】

(1)當(dāng)時(shí),,與作差可得,即可得到數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,即可求解;對(duì)取自然對(duì)數(shù),則,即是以1為首項(xiàng),以2為公比的等比數(shù)列,即可求解;(2)由(1)可得,再利用錯(cuò)位相減法求解即可.【詳解】解:(1)因?yàn)?,①當(dāng)時(shí),,解得;當(dāng)時(shí),有,②由①②得,,又,所以,即數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,故,又因?yàn)?且,取自然對(duì)數(shù)得,所以,又因?yàn)?所以是以1為首項(xiàng),以2為公比的等比數(shù)列,所以,即(2)由(1)知,,所以,③,④③減去④得:,所以【點(diǎn)睛】本題考查由與的關(guān)系求通項(xiàng)公式,考查錯(cuò)位相減法求數(shù)列的和.21、(1)(2)的遞減區(qū)間為和【解析】

(1)化簡(jiǎn)函數(shù),代入,計(jì)算即可;(2)先利用正弦函數(shù)的圖象與性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論