版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PAGEPAGE8高考數(shù)學最容易丟分的知識點和易混點匯總33個知識點匯總1、遺忘空集致誤由于空集是任何非空集合的真子集,因此B=?時也滿足B?A。解含有參數(shù)的集合問題時,要特別注意當參數(shù)在某個范圍內(nèi)取值時所給的集合可能是空集這種情況。2、忽視集合元素的三性致誤集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。3、混淆命題的否定與否命題命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論。4、充分條件、必要條件顛倒致誤對于兩個條件A,B,如果A?B成立,則A是B的充分條件,B是A的必要條件;如果B?A成立,則A是B的必要條件,B是A的充分條件;如果A?B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據(jù)充分條件和必要條件的概念作出準確的判斷。5、“或”“且”“非”理解不準致誤命題p∨q真?p真或q真,命題p∨q假?p假且q假(概括為一真即真);命題p∧q真?p真且q真,命題p∧q假?p假或q假(概括為一假即假);p真?p假;p假?p真(概括為一真一假)。求參數(shù)取值范圍的題目,也可以把“或”“且”“非”與集合的“并”“交”“補”對應(yīng)起來進行理解,通過集合的運算求解。6、函數(shù)的單調(diào)區(qū)間理解不準致誤在研究函數(shù)問題時要時時刻刻想到“函數(shù)的圖像”,學會從函數(shù)圖像上去分析問題、尋找解決問題的方法。對于函數(shù)的幾個不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。7、判斷函數(shù)奇偶性忽略定義域致誤判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域關(guān)于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶函數(shù)。8、函數(shù)零點定理使用不當致誤如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,但f(a)f(b)>0時,不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點。函數(shù)的零點有“變號零點”和“不變號零點”,對于“不變號零點”函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點問題時要注意這個問題。9、三角函數(shù)的單調(diào)性判斷致誤對于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當ω>0時,由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sinx的單調(diào)性相同,故可完全按照函數(shù)y=sinx的單調(diào)區(qū)間解決;但當ω<0時,內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對于帶有絕對值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進行判斷。10、忽視零向量致誤零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應(yīng)給予足夠的重視。11、向量夾角范圍不清致誤解題時要全面考慮問題。數(shù)學試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關(guān)鍵,如當a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。12、an與Sn關(guān)系不清致誤在數(shù)列問題中,數(shù)列的通項an與其前n項和Sn之間存在下列關(guān)系:an=S1,n=1,Sn-Sn-1,n≥2。這個關(guān)系對任意數(shù)列都是成立的,但要注意的是這個關(guān)系式是分段的,在n=1和n≥2時這個關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關(guān)系式時要牢牢記住其“分段”的特點。13、對數(shù)列的定義、性質(zhì)理解錯誤等差數(shù)列的前n項和在公差不為零時是關(guān)于n的常數(shù)項為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。14、數(shù)列中的最值錯誤數(shù)列問題中其通項公式、前n項和公式都是關(guān)于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點認識和理解數(shù)列問題。數(shù)列的通項an與前n項和Sn的關(guān)系是高考的命題重點,解題時要注意把n=1和n≥2分開討論,再看能不能統(tǒng)一。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點要根據(jù)正整數(shù)距離二次函數(shù)的對稱軸的遠近而定。15、錯位相減求和項處理不當致誤錯位相減求和法的適用條件:數(shù)列是由一個等差數(shù)列和一個等比數(shù)列對應(yīng)項的乘積所組成的,求其前n項和。基本方法是設(shè)這個和式為Sn,在這個和式兩端同時乘以等比數(shù)列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉(zhuǎn)化為以求一個等比數(shù)列的前n項和或前n-1項和為主的求和問題.這里最容易出現(xiàn)問題的就是錯位相減后對剩余項的處理。16、不等式性質(zhì)應(yīng)用不當致誤在使用不等式的基本性質(zhì)進行推理論證時一定要準確,特別是不等式兩端同時乘以或同時除以一個數(shù)式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會出現(xiàn)錯誤。17、忽視基本不等式應(yīng)用條件致誤利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數(shù)的最值時,務(wù)必注意a,b為正數(shù)(或a,b非負),ab或a+b其中之一應(yīng)是定值,特別要注意等號成立的條件。對形如y=ax+bx(a,b>0)的函數(shù),在應(yīng)用基本不等式求函數(shù)最值時,一定要注意ax,bx的符號,必要時要進行分類討論,另外要注意自變量x的取值范圍,在此范圍內(nèi)等號能否取到。18、不等式恒成立問題致誤解決不等式恒成立問題的常規(guī)求法是:借助相應(yīng)函數(shù)的單調(diào)性求解,其中的主要方法有數(shù)形結(jié)合法、變量分離法、主元法。通過最值產(chǎn)生結(jié)論。應(yīng)注意恒成立與存在性問題的區(qū)別,如對任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立問題,但對存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問題,即f(x)min≤g(x)max,應(yīng)特別注意兩函數(shù)中的最大值與最小值的關(guān)系。19、忽視三視圖中的實、虛線致誤三視圖是根據(jù)正投影原理進行繪制,嚴格按照“長對正,高平齊,寬相等”的規(guī)則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實線畫出,不可見的輪廓線用虛線畫出,這一點很容易疏忽。20、面積體積計算轉(zhuǎn)化不靈活致誤面積、體積的計算既需要學生有扎實的基礎(chǔ)知識,又要用到一些重要的思想方法,是高考考查的重要題型.因此要熟練掌握以下幾種常用的思想步乘法計數(shù)原理,一般是先分類,每一類中再分步,注意分類、分步時要不重復(fù)、不遺漏,對于“至少、至多”型問題除了可以用分類方法處理外,還可以用間接法處理。29、排列、組合不分致誤為了簡化問題和表達方便,解題時應(yīng)將具有實際意義的排列組合問題符號化、數(shù)學化,建立適當?shù)哪P?,再?yīng)用相關(guān)知識解決.建立模型的關(guān)鍵是判斷所求問題是排列問題還是組合問題,其依據(jù)主要是看元素的組成有沒有順序性,有順序性的是排列問題,無順序性的是組合問題。30、混淆項系數(shù)與二項式系數(shù)致誤在二項式(a+b)n的展開式中,其通項Tr+1=Crnan-rbr是指展開式的第r+1項,因此展開式中第1,2,3,...,n項的二項式系數(shù)分別是C0n,C1n,C2n,...,Cn-1n,而不是C1n,C2n,C3n,...,Cnn。而項的系數(shù)是二項式系數(shù)與其他數(shù)字因數(shù)的積。31、循環(huán)結(jié)束判斷不準致誤控制循環(huán)結(jié)構(gòu)的是計數(shù)變量和累加變量的變化規(guī)律以及循環(huán)結(jié)束的條件。在解答這類題目時首先要弄清楚這兩個變量的變化規(guī)律,其次要看清楚循環(huán)結(jié)束的條件,這個條件由輸出要求所決定,看清楚是滿足條件時結(jié)束還是不滿足條件時結(jié)束。32、條件結(jié)構(gòu)對條件判斷不準致誤條件結(jié)構(gòu)的程序框圖中對判斷條件的分類是逐級進行的,其中沒有遺漏也沒有重復(fù),在解題時對判斷條件要仔細辨別,看清楚條件和函數(shù)的對應(yīng)關(guān)系,對條件中的數(shù)值不要漏掉也不要重復(fù)了端點值。33、復(fù)數(shù)的概念不清致對于復(fù)數(shù)a+bi(a,b∈R),a叫做實部,b叫做虛部;當且僅當b=0時,復(fù)數(shù)a+bi(a,b∈R)是實數(shù)a;當b≠0時,復(fù)數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù)。解決復(fù)數(shù)概念類試題要仔細區(qū)分以上概念差別,防止出錯。另外,i2=-1是實現(xiàn)實數(shù)與虛數(shù)互化的橋梁,要適時進行轉(zhuǎn)化,解題時極易丟掉“-”而出錯。數(shù)學66個易混易錯點匯總一、集合與函數(shù)1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進行求解。2.在應(yīng)用條件時,易忽略是空集的情況3.你會用補集的思想解決有關(guān)問題嗎?4.簡單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?5.你知道“否命題”與“命題的否定形式”的區(qū)別。6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則。7.判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關(guān)于原點對稱。8.求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標注該函數(shù)的定義域。9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負)和導(dǎo)數(shù)法11.求函數(shù)單調(diào)性時,易錯誤地在多個單調(diào)區(qū)間之間添加符號“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示。12.求函數(shù)的值域必須先求函數(shù)的定義域。13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題)。這幾種基本應(yīng)用你掌握了嗎?14.解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論15.三個二次(哪三個二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?16.用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。17.“實系數(shù)一元二次方程有實數(shù)解”轉(zhuǎn)化時,你是否注意到:當時,“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項系數(shù)可能為的零的情形?二、不等式18.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”。19.絕對值不等式的解法及其幾何意義是什么?20.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?21.解含參數(shù)不等式的通法是“定義域為前提,函數(shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”。22.在求不等式的解集、定義域及值域時,其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示。23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”。三、數(shù)列24.解決一些等比數(shù)列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?25.在“已知,求”的問題中,你在利用公式時注意到了嗎?需要驗證,有些題目通項是分段函數(shù)。26.數(shù)列單調(diào)性問題能否等同于對應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)27.應(yīng)用數(shù)學歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時成立,再結(jié)合一些數(shù)學方法用來證明時也成立。四、三角函數(shù)28.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?29.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?30.在解三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?31.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角。異角化同角,異名化同名,高次化低次)32.你還記得某些特殊角的三角函數(shù)值嗎?33.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì)。你會寫三角函數(shù)的單調(diào)區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?34.函數(shù)的圖象的平移,方程的平移易混:(1)函數(shù)的圖象的平移為“左+右-,上+下-”。(2)方程表示的圖形的平移為“左+右-,上-下+”。35.在三角函數(shù)中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數(shù)值,再判定角的范圍)36.正弦定理時易忘比值還等于2R.五、平面向量37.數(shù)0有區(qū)別,0的模為數(shù)0,它不是沒有方向,而是方向不定??梢钥闯膳c任意向量平行,但與任意向量都不垂直。38.數(shù)量積與兩個實數(shù)乘積的區(qū)別:在實數(shù)中:若a≠0,且ab=0,則b=0,但在向量的數(shù)量積中,若a≠0,且a?b=0,不能推出b=0。39.a?b<0是向量和向量夾角為鈍角的必要而不充分條件。六、解析幾何40.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?41.直線在兩坐標軸上的截距相等,直線方程可以理解為,但不要忘記當時,直線在兩坐標軸上的截距都是0,亦為截距相等。42.解決線性規(guī)劃問題的基本步驟是什么?請你注意解題格式和完整的文字表達。①設(shè)出變量,寫出目標函數(shù)②寫出線性約束條件③畫出可行域④作出目標函數(shù)對應(yīng)的系列平行線,找到并求出最優(yōu)解(5)應(yīng)用題一定要有答。43.三種圓錐曲線的定義、圖形、標準方程、幾何性質(zhì),橢圓與雙曲線中的兩個特征三角形你掌握了嗎?44.圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解決哪一些問題?45.通徑是拋物線的所有焦點弦中最短的弦。(想一想在雙曲線中的結(jié)論?)46.在用圓錐曲線與直線聯(lián)立求解時,消元后得到的方程中要注意:二次項的系數(shù)是否為零?橢圓,雙曲線二次項系數(shù)為零時直線與其只有一個交點,判別式的限制。(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行)。47.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經(jīng)有坐標系了,是否需要建立直角坐標系?七、立體幾何48.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。49.線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問題中的應(yīng)用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?50.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關(guān)鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關(guān)鍵)一面四直線,立柱是關(guān)鍵,垂直三處見51.線面平行的判定定理和性質(zhì)定理在應(yīng)用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為”一個平面內(nèi)的兩條相交直線與另一個平面內(nèi)的兩條相交直線分別平行”而導(dǎo)致證明過程跨步太大。52.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。53.異面直線所成角利用“平移法”求解時,一定要注意平移后所得角等于所求角(或其補角),特別是題目告訴異面直線所成角,應(yīng)用時一定要從題意出發(fā),是用銳角還是其補角,還是兩種情況都有可能。54.兩條異面直線所成的角的范圍:0°≤α≤90°直線與平面所成的角的范圍:0°≤α≤90°二面角的平面角的取值范圍:0°≤α≤180°55.平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前后有關(guān)幾何元素的“不變量”與“不變性”。56.棱柱及其性質(zhì)、平行
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省鄒城市實驗中學2025屆物理高一上期中調(diào)研模擬試題含解析
- 2025屆湖北省黃岡市麻城實驗高中高二物理第一學期期中達標檢測試題含解析
- 2025屆陜西省西安市第七十中學高二物理第一學期期中達標測試試題含解析
- 遼寧沈陽市郊聯(lián)體2025屆高三物理第一學期期中經(jīng)典模擬試題含解析
- 陜西省韓城市2025屆高三物理第一學期期中達標檢測模擬試題含解析
- 2025屆湖北省武漢第二中學物理高一第一學期期中檢測模擬試題含解析
- 2025屆安徽省合肥市肥東縣高級中學物理高一第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析
- 2025屆江西省臨川市高一物理第一學期期中達標測試試題含解析
- 山西省河津三中2025屆高二物理第一學期期末教學質(zhì)量檢測試題含解析
- 山東省泰安市東平高級中學2025屆物理高二第一學期期末考試試題含解析
- 【川教版】《生命 生態(tài) 安全》四上第13課《預(yù)防凍瘡》課件
- 結(jié)構(gòu)力學試卷西南交通大學期中答案期中考試
- 截肢幻肢痛心理護理
- 廣東省佛山市2022-2023學年高二上學期期末數(shù)學試題(學生版+解析)
- 藥疹的健康宣教
- 礦井水害綜合監(jiān)測預(yù)警系統(tǒng)通用技術(shù)條件
- 財務(wù)管理的財務(wù)財務(wù)數(shù)字化轉(zhuǎn)型
- 直線與圓的位置關(guān)系-省賽一等獎
- 糖尿病治療效果的藥物經(jīng)濟學研究
- 生殖中心胚胎室出科小結(jié)
- 湖南鹽業(yè)公司招聘考試試題
評論
0/150
提交評論