廣東省東莞市中學(xué)堂鎮(zhèn)六校2023年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁
廣東省東莞市中學(xué)堂鎮(zhèn)六校2023年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁
廣東省東莞市中學(xué)堂鎮(zhèn)六校2023年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁
廣東省東莞市中學(xué)堂鎮(zhèn)六校2023年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁
廣東省東莞市中學(xué)堂鎮(zhèn)六校2023年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.若正比例函數(shù)y=kx的圖象上一點(除原點外)到x軸的距離與到y(tǒng)軸的距離之比為3,且y值隨著x值的增大而減小,則k的值為()A.﹣ B.﹣3 C. D.32.一個幾何體的三視圖如圖所示,那么這個幾何體是()A. B. C. D.3.如圖,已知AB∥CD,AD=CD,∠1=40°,則∠2的度數(shù)為()A.60° B.65° C.70° D.75°4.如圖,在⊙O中,弦AB=CD,AB⊥CD于點E,已知CE?ED=3,BE=1,則⊙O的直徑是()A.2 B. C.2 D.55.如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點A逆時針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點C,則OC=()A.1 B.2 C.3 D.46.在,0,-1,這四個數(shù)中,最小的數(shù)是()A. B.0 C. D.-17.十九大報告指出,我國目前經(jīng)濟保持了中高速增長,在世界主要國家中名列前茅,國內(nèi)生產(chǎn)總值從54萬億元增長80萬億元,穩(wěn)居世界第二,其中80萬億用科學(xué)記數(shù)法表示為()A.8×1012 B.8×1013 C.8×1014 D.0.8×10138.在0,-2,5,,-0.3中,負(fù)數(shù)的個數(shù)是().A.1 B.2 C.3 D.49.如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E;B、E是半圓弧的三等分點,的長為,則圖中陰影部分的面積為()A. B. C. D.10.從1、2、3、4、5、6這六個數(shù)中隨機取出一個數(shù),取出的數(shù)是3的倍數(shù)的概率是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在菱形ABCD中,對角線AC、BD相交于點O,點E是線段BO上的一個動點,點F為射線DC上一點,若∠ABC=60°,∠AEF=120°,AB=4,則EF可能的整數(shù)值是_____.12.如圖,在平面直角坐標(biāo)系中有矩形ABCD,A(0,0),C(8,6),M為邊CD上一動點,當(dāng)△ABM是等腰三角形時,M點的坐標(biāo)為_____.13.把球放在長方體紙盒內(nèi),球的一部分露出盒外,其截面如圖,已知EF=CD=80cm,則截面圓的半徑為cm.14.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2=_____°.15.如圖,在□ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG,若AD=5,DE=6,則AG的長是________.16.已知:正方形ABCD.求作:正方形ABCD的外接圓.作法:如圖,(1)分別連接AC,BD,交于點O;(2)以點O為圓心,OA長為半徑作⊙O,⊙O即為所求作的圓.請回答:該作圖的依據(jù)是__________________________________.三、解答題(共8題,共72分)17.(8分)拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.求此拋物線的解析式;已知點D在第四象限的拋物線上,求點D關(guān)于直線BC對稱的點D’的坐標(biāo);在(2)的條件下,連結(jié)BD,問在x軸上是否存在點P,使,若存在,請求出P點的坐標(biāo);若不存在,請說明理由.18.(8分)為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車庫.如圖是停車庫坡道入口的設(shè)計圖,其中MN是水平線,MN∥AD,AD⊥DE,CF⊥AB,垂足分別為D,F(xiàn),坡道AB的坡度=1:3,AD=9米,點C在DE上,CD=0.5米,CD是限高標(biāo)志牌的高度(標(biāo)志牌上寫有:限高米).如果進入該車庫車輛的高度不能超過線段CF的長,則該停車庫限高多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈3.16)19.(8分)如圖,矩形ABCD中,點E為BC上一點,DF⊥AE于點F,求證:∠AEB=∠CDF.20.(8分)學(xué)生對待學(xué)習(xí)的態(tài)度一直是教育工作者關(guān)注的問題之一.為此,某區(qū)教委對該區(qū)部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:此次抽樣調(diào)查中,共調(diào)查了名學(xué)生;將圖①補充完整;求出圖②中C級所占的圓心角的度數(shù).21.(8分)已知:AB為⊙O上一點,如圖,,,BH與⊙O相切于點B,過點C作BH的平行線交AB于點E.(1)求CE的長;(2)延長CE到F,使,連結(jié)BF并延長BF交⊙O于點G,求BG的長;(3)在(2)的條件下,連結(jié)GC并延長GC交BH于點D,求證:22.(10分)重慶某中學(xué)組織七、八、九年級學(xué)生參加“直轄20年,點贊新重慶”作文比賽,該校將收到的參賽作文進行分年級統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息完成以下問題.扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應(yīng)的圓心角是度,并補全條形統(tǒng)計圖;經(jīng)過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學(xué)校準(zhǔn)備從特等獎作文中任選兩篇刊登在???,請利用畫樹狀圖或列表的方法求出七年級特等獎作文被選登在??系母怕剩?3.(12分)如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點A(﹣,2),B(n,﹣1).求直線與雙曲線的解析式.點P在x軸上,如果S△ABP=3,求點P的坐標(biāo).24.如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.求∠ABC的度數(shù);求證:AE是⊙O的切線;當(dāng)BC=4時,求劣弧AC的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

設(shè)該點的坐標(biāo)為(a,b),則|b|=1|a|,利用一次函數(shù)圖象上的點的坐標(biāo)特征可得出k=±1,再利用正比例函數(shù)的性質(zhì)可得出k=-1,此題得解.【詳解】設(shè)該點的坐標(biāo)為(a,b),則|b|=1|a|,∵點(a,b)在正比例函數(shù)y=kx的圖象上,∴k=±1.又∵y值隨著x值的增大而減小,∴k=﹣1.故選:B.【點睛】本題考查了一次函數(shù)圖象上點的坐標(biāo)特征以及正比例函數(shù)的性質(zhì),利用一次函數(shù)圖象上點的坐標(biāo)特征,找出k=±1是解題的關(guān)鍵.2、C【解析】由主視圖和左視圖可得此幾何體為柱體,根據(jù)俯視圖為三角形可得此幾何體為三棱柱.故選C.3、C【解析】

由等腰三角形的性質(zhì)可求∠ACD=70°,由平行線的性質(zhì)可求解.【詳解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故選:C.【點睛】本題考查了等腰三角形的性質(zhì),平行線的性質(zhì),是基礎(chǔ)題.4、C【解析】

作OH⊥AB于H,OG⊥CD于G,連接OA,根據(jù)相交弦定理求出EA,根據(jù)題意求出CD,根據(jù)垂徑定理、勾股定理計算即可.【詳解】解:作OH⊥AB于H,OG⊥CD于G,連接OA,由相交弦定理得,CE?ED=EA?BE,即EA×1=3,解得,AE=3,∴AB=4,∵OH⊥AB,∴AH=HB=2,∵AB=CD,CE?ED=3,∴CD=4,∵OG⊥CD,∴EG=1,由題意得,四邊形HEGO是矩形,∴OH=EG=1,由勾股定理得,OA=,∴⊙O的直徑為,故選C.【點睛】此題考查了相交弦定理、垂徑定理、勾股定理、矩形的判定與性質(zhì);根據(jù)圖形作出相應(yīng)的輔助線是解本題的關(guān)鍵.5、B【解析】

先利用三角函數(shù)計算出∠OAB=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠CAB=30°,根據(jù)切線的性質(zhì)得OC⊥AC,從而得到∠OAC=30°,然后根據(jù)含30度的直角三角形三邊的關(guān)系可得到OC的長.【詳解】解:在Rt△ABO中,sin∠OAB===,∴∠OAB=60°,∵直線l1繞點A逆時針旋轉(zhuǎn)30°后得到的直線l1剛好與⊙O相切于點C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=OA=1.故選B.【點睛】本題考查了直線與圓的位置關(guān)系:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d,則直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r.也考查了旋轉(zhuǎn)的性質(zhì).6、D【解析】試題分析:因為負(fù)數(shù)小于0,正數(shù)大于0,正數(shù)大于負(fù)數(shù),所以在,0,-1,這四個數(shù)中,最小的數(shù)是-1,故選D.考點:正負(fù)數(shù)的大小比較.7、B【解析】80萬億用科學(xué)記數(shù)法表示為8×1.故選B.點睛:本題考查了科學(xué)計數(shù)法,科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).8、B【解析】

根據(jù)負(fù)數(shù)的定義判斷即可【詳解】解:根據(jù)負(fù)數(shù)的定義可知,這一組數(shù)中,負(fù)數(shù)有兩個,即-2和-0.1.故選B.9、D【解析】

連接BD,BE,BO,EO,先根據(jù)B、E是半圓弧的三等分點求出圓心角∠BOD的度數(shù),再利用弧長公式求出半圓的半徑R,再利用圓周角定理求出各邊長,通過轉(zhuǎn)化將陰影部分的面積轉(zhuǎn)化為S△ABC﹣S扇形BOE,然后分別求出面積相減即可得出答案.【詳解】解:連接BD,BE,BO,EO,∵B,E是半圓弧的三等分點,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵的長為,∴解得:R=4,∴AB=ADcos30°=,∴BC=AB=,∴AC=BC=6,∴S△ABC=×BC×AC=××6=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面積相等,∴圖中陰影部分的面積為:S△ABC﹣S扇形BOE=故選:D.【點睛】本題主要考查弧長公式,扇形面積公式,圓周角定理等,掌握圓的相關(guān)性質(zhì)是解題的關(guān)鍵.10、B【解析】考點:概率公式.專題:計算題.分析:根據(jù)概率的求法,找準(zhǔn)兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.解答:解:從1、2、3、4、5、6這六個數(shù)中隨機取出一個數(shù),共有6種情況,取出的數(shù)是3的倍數(shù)的可能有3和6兩種,故概率為2/6="1/"3.故選B.點評:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)="m"/n.二、填空題(本大題共6個小題,每小題3分,共18分)11、2,3,1.【解析】分析:根據(jù)題意得出EF的取值范圍,從而得出EF的值.詳解:∵AB=1,∠ABC=60°,∴BD=1,當(dāng)點E和點B重合時,∠FBD=90°,∠BDC=30°,則EF=1;當(dāng)點E和點O重合時,∠DEF=30°,則△EFD為等腰三角形,則EF=FD=2,∴EF可能的整數(shù)值為2、3、1.點睛:本題主要考查的就是菱形的性質(zhì)以及直角三角形的勾股定理,屬于中等難度的題型.解決這個問題的關(guān)鍵就是找出當(dāng)點E在何處時取到最大值和最小值,從而得出答案.12、(4,6),(8﹣27,6),(27,6).【解析】

分別取三個點作為定點,然后根據(jù)勾股定理和等腰三角形的兩個腰相等來判斷是否存在符合題意的M的坐標(biāo).【詳解】解:當(dāng)M為頂點時,AB長為底=8,M在DC中點上,所以M的坐標(biāo)為(4,6),當(dāng)B為頂點時,AB長為腰=8,M在靠近D處,根據(jù)勾股定理可知ME=82-所以M的坐標(biāo)為(8﹣27,6);當(dāng)A為頂點時,AB長為腰=8,M在靠近C處,根據(jù)勾股定理可知MF=82-所以M的坐標(biāo)為(27,6);綜上所述,M的坐標(biāo)為(4,6),(8﹣27,6),(27,6);故答案為:(4,6),(8﹣27,6),(27,6).【點睛】本題主要考查矩形的性質(zhì)、坐標(biāo)與圖形性質(zhì),解題關(guān)鍵是根據(jù)對等腰三角形性質(zhì)的掌握和勾股定理的應(yīng)用.13、1【解析】

過點O作OM⊥EF于點M,反向延長OM交BC于點N,連接OF,設(shè)OF=r,則OM=80-r,MF=40,然后在Rt△MOF中利用勾股定理求得OF的長即可.【詳解】過點O作OM⊥EF于點M,反向延長OM交BC于點N,連接OF,設(shè)OF=x,則OM=80﹣r,MF=40,在Rt△OMF中,∵OM2+MF2=OF2,即(80﹣r)2+402=r2,解得:r=1cm.故答案為1.14、40【解析】如圖,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案為:40.15、2【解析】試題解析:連接EG,

∵由作圖可知AD=AE,AG是∠BAD的平分線,

∴∠1=∠2,

∴AG⊥DE,OD=DE=1.

∵四邊形ABCD是平行四邊形,

∴CD∥AB,

∴∠2=∠1,

∴∠1=∠1,

∴AD=DG.

∵AG⊥DE,

∴OA=AG.

在Rt△AOD中,OA==4,

∴AG=2AO=2.

故答案為2.16、正方形的對角線相等且互相垂直平分;點到圓心的距離等于圓的半徑的點在這個圓上;四邊形的四個頂點在同一個圓上,這個圓叫四邊形的外接圓.【解析】

利用正方形的性質(zhì)得到OA=OB=OC=OD,則以點O為圓心,OA長為半徑作⊙O,點B、C、D都在⊙O上,從而得到⊙O為正方形的外接圓.【詳解】∵四邊形ABCD為正方形,∴OA=OB=OC=OD,∴⊙O為正方形的外接圓.故答案為正方形的對角線相等且互相垂直平分;點到圓心的距離等于圓的半徑的點在這個圓上;四邊形的四個頂點在同一個圓上,這個圓叫四邊形的外接圓.【點睛】本題考查了作圖﹣復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.三、解答題(共8題,共72分)17、(1)(2)(0,-1)(3)(1,0)(9,0)【解析】

(1)將A(?1,0)、C(0,?3)兩點坐標(biāo)代入拋物線y=ax2+bx?3a中,列方程組求a、b的值即可;(2)將點D(m,?m?1)代入(1)中的拋物線解析式,求m的值,再根據(jù)對稱性求點D關(guān)于直線BC對稱的點D'的坐標(biāo);(3)分兩種情形①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,②連接BD′,過點C作CP′∥BD′,交x軸于P′,分別求出直線CP和直線CP′的解析式即可解決問題.【詳解】解:(1)將A(?1,0)、C(0,?3)代入拋物線y=ax2+bx?3a中,得,解得∴y=x2?2x?3;(2)將點D(m,?m?1)代入y=x2?2x?3中,得m2?2m?3=?m?1,解得m=2或?1,∵點D(m,?m?1)在第四象限,∴D(2,?3),∵直線BC解析式為y=x?3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3?2=1,∴點D關(guān)于直線BC對稱的點D'(0,?1);(3)存在.滿足條件的點P有兩個.①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,∵直線BD解析式為y=3x?9,∵直線CP過點C,∴直線CP的解析式為y=3x?3,∴點P坐標(biāo)(1,0),②連接BD′,過點C作CP′∥BD′,交x軸于P′,∴∠P′CB=∠D′BC,根據(jù)對稱性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直線BD′的解析式為∵直線CP′過點C,∴直線CP′解析式為,∴P′坐標(biāo)為(9,0),綜上所述,滿足條件的點P坐標(biāo)為(1,0)或(9,0).【點睛】本題考查了二次函數(shù)的綜合運用.關(guān)鍵是由已知條件求拋物線解析式,根據(jù)拋物線的對稱性,直線BC的特殊性求點的坐標(biāo),學(xué)會分類討論,不能漏解.18、2.1.【解析】

據(jù)題意得出tanB=,即可得出tanA,在Rt△ADE中,根據(jù)勾股定理可求得DE,即可得出∠FCE的正切值,再在Rt△CEF中,設(shè)EF=x,即可求出x,從而得出CF=1x的長.【詳解】解:據(jù)題意得tanB=,∵MN∥AD,∴∠A=∠B,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2設(shè)EF=x,CF=1x(x>0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面沒有“設(shè)x>0”,則此處應(yīng)“x=±,舍負(fù)”),∴CF=1x=≈2.1,∴該停車庫限高2.1米.【點睛】點評:本題考查了解直角三角形的應(yīng)用,坡面坡角問題和勾股定理,解題的關(guān)鍵是坡度等于坡角的正切值.19、見解析.【解析】

利用矩形的性質(zhì)結(jié)合平行線的性質(zhì)得出∠CDF+∠ADF=90°,進而得出∠CDF=∠DAF,由AD∥BC,得出答案.【詳解】∵四邊形ABCD是矩形,∴∠ADC=90°,AD∥BC,∴∠CDF+∠ADF=90°,∵DF⊥AE于點F,∴∠DAF+∠ADF=90°,∴∠CDF=∠DAF.∵AD∥BC,∴∠DAF=∠AEB,∴∠AEB=∠CDF.【點睛】此題主要考查了矩形的性質(zhì)以及平行線的性質(zhì),正確得出∠CDF=∠DAF是解題關(guān)鍵.20、(1)200,(2)圖見試題解析(3)540【解析】

試題分析:(1)根據(jù)A級的人數(shù)與所占的百分比列式進行計算即可求出被調(diào)查的學(xué)生人數(shù);(2)根據(jù)總?cè)藬?shù)求出C級的人數(shù),然后補全條形統(tǒng)計圖即可;(3)1減去A、B兩級所占的百分比乘以360°即可得出結(jié)論.試題解析::(1)調(diào)查的學(xué)生人數(shù)為:=200名;(2)C級學(xué)生人數(shù)為:200-50-120=30名,補全統(tǒng)計圖如圖;(3)學(xué)習(xí)態(tài)度達標(biāo)的人數(shù)為:360×[1-(25%+60%]=54°.答:求出圖②中C級所占的圓心角的度數(shù)為54°.考點:條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用21、(1)CE=4;(2)BG=8;(3)證明見解析.【解析】

(1)只要證明△ABC∽△CBE,可得,由此即可解決問題;

(2)連接AG,只要證明△ABG∽△FBE,可得,由BE==4,再求出BF,即可解決問題;

(3)通過計算首先證明CF=FG,推出∠FCG=∠FGC,由CF∥BD,推出∠GCF=∠BDG,推出∠BDG=∠BGD即可證明.【詳解】解:(1)∵BH與⊙O相切于點B,∴AB⊥BH,∵BH∥CE,∴CE⊥AB,∵AB是直徑,∴∠CEB=∠ACB=90°,∵∠CBE=∠ABC,∴△ABC∽△CBE,∴,∵AC=,∴CE=4.(2)連接AG.∵∠FEB=∠AGB=90°,∠EBF=∠ABG,∴△ABG∽△FBE,∴,∵BE==4,∴BF=,∴,∴BG=8.(3)易知CF=4+=5,∴GF=BG﹣BF=5,∴CF=GF,∴∠FCG=∠FGC,∵CF∥BD,∴∠GCF=∠BDG,∴∠BDG=∠BGD,∴BG=BD.【點睛】本題考查的是切線的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理的應(yīng)用,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.22、【解析】

試題分析:(1)求出總的作文篇數(shù),即可得出九年級參賽作文篇數(shù)對應(yīng)的圓心角的度數(shù),求出八年級的作文篇數(shù),補全條形統(tǒng)計圖即可;(2)設(shè)四篇榮獲特等獎的作文分別為A、B、C、D,其中A代表七年級獲獎的特等獎作文,用畫樹狀法即可求得結(jié)果.試題解析:(1)20÷20%=100,九年級參賽作文篇數(shù)對應(yīng)的圓心角=360°×=126°;100﹣20﹣35=45,補全條形統(tǒng)計圖如圖所示:(2)假設(shè)4篇榮獲特等獎的作文分別為A、B、C、D,其中A代表七年級獲獎的特等獎作文.畫樹狀圖法:共有12種可能的結(jié)果,七年級特等獎作文被選登在??系慕Y(jié)果有6種,∴P(七年級特等獎作文被選登在??希?.考點:1.條形統(tǒng)計圖;2.扇形統(tǒng)計圖;3.列表法與畫樹狀圖法.23、(1)y=﹣2x+1;(2)點P的坐標(biāo)為(﹣,0)或(,0).【解析】

(1)把A的坐標(biāo)代入可求出m,即可求出反比例函數(shù)解析式,把B點的坐標(biāo)代入反比例函數(shù)解析式,即可求出n,把A,B的坐標(biāo)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論