版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年浙江杭州西湖區(qū)中考數學模擬預測試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,直線AB∥CD,AE平分∠CAB,AE與CD相交于點E,∠ACD=40°,則∠DEA=()A.40° B.110° C.70° D.140°2.李老師在編寫下面這個題目的答案時,不小心打亂了解答過程的順序,你能幫他調整過來嗎?證明步驟正確的順序是已知:如圖,在中,點D,E,F分別在邊AB,AC,BC上,且,,求證:∽.證明:又,,,,∽.A. B. C. D.3.制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴大為原來的3倍,那么擴大后長方形廣告牌的成本是()A.360元 B.720元 C.1080元 D.2160元4.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的長是()A.3 B. C. D.5.將一塊直角三角板ABC按如圖方式放置,其中∠ABC=30°,A、B兩點分別落在直線m、n上,∠1=20°,添加下列哪一個條件可使直線m∥n()A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°6.下列計算正確的是()A.a2?a3=a6 B.(a2)3=a6 C.a6﹣a2=a4 D.a5+a5=a107.如圖,在平行四邊形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④ B.②和③ C.③和④ D.②和④8.如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,,則DE:EC=()A.2:5 B.2:3 C.3:5 D.3:29.在下列四個標志中,既是中心對稱又是軸對稱圖形的是()A. B. C. D.10.人的頭發(fā)直徑約為0.00007m,這個數據用科學記數法表示()A.0.7×10﹣4B.7×10﹣5C.0.7×104D.7×105二、填空題(共7小題,每小題3分,滿分21分)11.如圖,矩形ABCD中,AD=5,∠CAB=30°,點P是線段AC上的動點,點Q是線段CD上的動點,則AQ+QP的最小值是___________.12.Rt△ABC中,∠ABC=90°,AB=3,BC=4,過點B的直線把△ABC分割成兩個三角形,使其中只有一個是等腰三角形,則這個等腰三角形的面積是_____.13.已知,則______14.利用1個a×a的正方形,1個b×b的正方形和2個a×b的矩形可拼成一個正方形(如圖所示),從而可得到因式分解的公式________.15.如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ?AC,其中正確的結論的個數是______.16.如圖,已知P是線段AB的黃金分割點,且PA>PB.若S1表示以PA為一邊的正方形的面積,S2表示長是AB、寬是PB的矩形的面積,則S1_______S2.(填“>”“="”“"<”)17.如圖,在Rt△AOB中,直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將△AOB繞點B逆時針旋轉90°后,得到△A′O′B,且反比例函數y=的圖象恰好經過斜邊A′B的中點C,若SABO=4,tan∠BAO=2,則k=_____.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,在矩形ABCD中,點E,F分別在AB,CD邊上,BE=DF,連接CE,AF.求證:AF=CE.19.(5分)解方程(1);(2)20.(8分)在“傳箴言”活動中,某班團支部對該班全體團員在一個月內所發(fā)箴言條數的情況進行了統計,并制成了如圖所示的兩幅不完整的統計圖:求該班團員在這一個月內所發(fā)箴言的平均條數是多少?并將該條形統計圖補充完整;如果發(fā)了3條箴言的同學中有兩位男同學,發(fā)了4條箴言的同學中有三位女同學.現要從發(fā)了3條箴言和4條箴言的同學中分別選出一位參加該校團委組織的“箴言”活動總結會,請你用列表法或樹狀圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.21.(10分)如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE,已知∠BAC=30°,EF⊥AB,垂足為F,連接DF試說明AC=EF;求證:四邊形ADFE是平行四邊形.22.(10分)先化簡÷(x-),然后從-<x<的范圍內選取一個合適的正整數作為x的值代入求值.23.(12分)在平面直角坐標系中,已知拋物線經過A(-3,0),B(0,-3),C(1,0)三點.(1)求拋物線的解析式;(2)若點M為第三象限內拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.求S關于m的函數關系式,并求出S的最大值;(3)若點P是拋物線上的動點,點Q是直線y=-x上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.24.(14分)定安縣定安中學初中部三名學生競選校學生會主席,他們的筆試成績和演講成績(單位:分)分別用兩種方式進行統計,如表和圖.ABC筆試859590口試8085(1)請將表和圖中的空缺部分補充完整;圖中B同學對應的扇形圓心角為度;競選的最后一個程序是由初中部的300名學生進行投票,三名候選人的得票情況如圖(沒有棄權票,每名學生只能推薦一人),則A同學得票數為,B同學得票數為,C同學得票數為;若每票計1分,學校將筆試、演講、得票三項得分按4:3:3的比例確定個人成績,請計算三名候選人的最終成績,并根據成績判斷當選.(從A、B、C、選擇一個填空)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
先由平行線性質得出∠ACD與∠BAC互補,并根據已知∠ACD=40°計算出∠BAC的度數,再根據角平分線性質求出∠BAE的度數,進而得到∠DEA的度數.【詳解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故選B.【點睛】本題考查了平行線的性質和角平分線的定義,解題的關鍵是熟練掌握兩直線平行,同旁內角互補.2、B【解析】
根據平行線的性質可得到兩組對應角相等,易得解題步驟;【詳解】證明:,,又,,∽.故選B.【點睛】本題考查了相似三角形的判定與性質;關鍵是證明三角形相似.3、C【解析】
根據題意求出長方形廣告牌每平方米的成本,根據相似多邊形的性質求出擴大后長方形廣告牌的面積,計算即可.【詳解】3m×2m=6m2,∴長方形廣告牌的成本是120÷6=20元/m2,將此廣告牌的四邊都擴大為原來的3倍,則面積擴大為原來的9倍,∴擴大后長方形廣告牌的面積=9×6=54m2,∴擴大后長方形廣告牌的成本是54×20=1080元,故選C.【點睛】本題考查的是相似多邊形的性質,掌握相似多邊形的面積比等于相似比的平方是解題的關鍵.4、A【解析】根據銳角三角函數的性質,可知cosA==,然后根據AC=2,解方程可求得AB=3.故選A.點睛:此題主要考查了解直角三角形,解題關鍵是明確直角三角形中,余弦值cosA=,然后帶入數值即可求解.5、D【解析】
根據平行線的性質即可得到∠2=∠ABC+∠1,即可得出結論.【詳解】∵直線EF∥GH,
∴∠2=∠ABC+∠1=30°+20°=50°,
故選D.【點睛】本題考查了平行線的性質,熟練掌握平行線的性質是解題的關鍵.6、B【解析】
根據同底數冪乘法、冪的乘方的運算性質計算后利用排除法求解.【詳解】A、a2?a3=a5,錯誤;B、(a2)3=a6,正確;C、不是同類項,不能合并,錯誤;D、a5+a5=2a5,錯誤;故選B.【點睛】本題綜合考查了整式運算的多個考點,包括同底數冪的乘法、冪的乘方、合并同類項,需熟練掌握且區(qū)分清楚,才不容易出錯.7、D【解析】∵四邊形ABCD是平行四邊形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②與④不一定成立,∵當四邊形是菱形時,②和④成立.故選D.8、B【解析】
∵四邊形ABCD是平行四邊形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴∵,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故選B9、C【解析】
根據軸對稱圖形與中心對稱圖形的概念對各選項分析判斷利用排除法求解.【詳解】解:A、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;B、既不是中心對稱圖形,也不是軸對稱圖形,故本選項錯誤;C、既是中心對稱圖形又是軸對稱圖形,故本選項正確;D、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.10、B【解析】
絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10﹣n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:0.00007m,這個數據用科學記數法表示7×10﹣1.故選:B.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×10﹣n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.二、填空題(共7小題,每小題3分,滿分21分)11、5【解析】
作點A關于直線CD的對稱點E,作EP⊥AC于P,交CD于點Q,此時QA+QP最短,由QA+QP=QE+PQ=PE可知,求出PE即可解決問題.【詳解】解:作點A關于直線CD的對稱點E,作EP⊥AC于P,交CD于點Q.∵四邊形ABCD是矩形,∴∠ADC=90°,∴DQ⊥AE,∵DE=AD,∴QE=QA,∴QA+QP=QE+QP=EP,∴此時QA+QP最短(垂線段最短),∵∠CAB=30°,∴∠DAC=60°,在Rt△APE中,∵∠APE=90°,AE=2AD=10,∴EP=AE?sin60°=10×=5.故答案為5.【點睛】本題考查矩形的性質、最短問題、銳角三角函數等知識,解題的關鍵是利用對稱以及垂線段最短找到點P、Q的位置,屬于中考??碱}型.12、3.1或4.32或4.2【解析】【分析】在Rt△ABC中,通過解直角三角形可得出AC=5、S△ABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面積即可.【詳解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB==5,S△ABC=AB?BC=1.沿過點B的直線把△ABC分割成兩個三角形,使其中只有一個是等腰三角形,有三種情況:①當AB=AP=3時,如圖1所示,S等腰△ABP=?S△ABC=×1=3.1;②當AB=BP=3,且P在AC上時,如圖2所示,作△ABC的高BD,則BD=,∴AD=DP==1.2,∴AP=2AD=3.1,∴S等腰△ABP=?S△ABC=×1=4.32;③當CB=CP=4時,如圖3所示,S等腰△BCP=?S△ABC=×1=4.2;綜上所述:等腰三角形的面積可能為3.1或4.32或4.2,故答案為:3.1或4.32或4.2.【點睛】本題考查了勾股定理、等腰三角形的性質以及三角形的面積,找出所有可能的分割方法,并求出剪出的等腰三角形的面積是解題的關鍵.13、34【解析】∵,∴=,故答案為34.14、a1+1ab+b1=(a+b)1【解析】試題分析:兩個正方形的面積分別為a1,b1,兩個長方形的面積都為ab,組成的正方形的邊長為a+b,面積為(a+b)1,所以a1+1ab+b1=(a+b)1.點睛:本題考查了運用完全平方公式分解因式,關鍵是理解題中給出的各個圖形之間的面積關系.15、①②③④.【解析】
由正方形的性質得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;
證明四邊形CBFG是矩形,得出S△FAB=FB?FG=S四邊形CBFG,②正確;
由等腰直角三角形的性質和矩形的性質得出∠ABC=∠ABF=45°,③正確;
證出△ACD∽△FEQ,得出對應邊成比例,得出④正確.【詳解】解:∵四邊形ADEF為正方形,
∴∠FAD=90°,AD=AF=EF,
∴∠CAD+∠FAG=90°,
∵FG⊥CA,
∴∠GAF+∠AFG=90°,
∴∠CAD=∠AFG,
在△FGA和△ACD中,,
∴△FGA≌△ACD(AAS),
∴AC=FG,①正確;
∵BC=AC,
∴FG=BC,
∵∠ACB=90°,FG⊥CA,
∴FG∥BC,
∴四邊形CBFG是矩形,∴∠CBF=90°,S△FAB=FB?FG=S四邊形CBFG,②正確;
∵CA=CB,∠C=∠CBF=90°,
∴∠ABC=∠ABF=45°,③正確;
∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
∴△ACD∽△FEQ,
∴AC:AD=FE:FQ,
∴AD?FE=AD2=FQ?AC,④正確;
故答案為①②③④.【點睛】本題考查了相似三角形的判定與性質、全等三角形的判定與性質、正方形的性質、矩形的判定與性質、等腰直角三角形的性質;熟練掌握正方形的性質,證明三角形全等和三角形相似是解決問題的關鍵.16、=.【解析】
黃金分割點,二次根式化簡.【詳解】設AB=1,由P是線段AB的黃金分割點,且PA>PB,根據黃金分割點的,AP=,BP=.∴.∴S1=S1.17、1【解析】設點C坐標為(x,y),作CD⊥BO′交邊BO′于點D,∵tan∠BAO=2,∴=2,∵S△ABO=?AO?BO=4,∴AO=2,BO=4,∵△ABO≌△A'O'B,∴AO=A′O′=2,BO=BO′=4,∵點C為斜邊A′B的中點,CD⊥BO′,∴CD=A′O′=1,BD=BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x·y=3×2=1.故答案為1.三、解答題(共7小題,滿分69分)18、證明見解析.【解析】試題分析:根據矩形的性質得出求出根據平行四邊形的判定得出四邊形是平行四邊形,即可得出答案.試題解析:∵四邊形ABCD是矩形,∴∴∴四邊形是平行四邊形,點睛:平行四邊形的判定:有一組對邊平行且相等的四邊形是平行四邊形.19、(1),;(2),.【解析】
(1)利用公式法求解可得;(2)利用因式分解法求解可得.【詳解】(1)解:∵,,,∴,∴,∴,;(2)解:原方程化為:,因式分解得:,整理得:,∴或,∴,.【點睛】本題主要考查解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結合方程的特點選擇合適、簡便的方法是解題的關鍵.20、(1)3,補圖詳見解析;(2)【解析】
(1)總人數=3÷它所占全體團員的百分比;發(fā)4條的人數=總人數-其余人數(2)列舉出所有情況,看恰好是一位男同學和一位女同學占總情況的多少即可【詳解】由扇形圖可以看到發(fā)箴言三條的有3名學生且占,故該班團員人數為:(人),則發(fā)4條箴言的人數為:(人),所以本月該班團員所發(fā)的箴言共(條),則平均所發(fā)箴言的條數是:(條).(2)畫樹形圖如下:由樹形圖可得,所選兩位同學恰好是一位男同學和一位女同學的概率為.【點睛】此題考查扇形統計圖,條形統計圖,列表法與樹狀圖法和扇形統計圖,看懂圖中數據是解題關鍵21、證明見解析.【解析】
(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等邊三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,從而可證明△AFE≌△BCA,再根據全等三角形的性質即可證明AC=EF.(2)根據(1)知道EF=AC,而△ACD是等邊三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根據平行四邊形的判定定理即可證明四邊形ADFE是平行四邊形.【詳解】證明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.又∵△ABE是等邊三角形,EF⊥AB,∴AB=2AF.∴AF=BC.∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,∴△AFE≌△BCA(HL).∴AC=EF.(2)∵△ACD是等邊三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.∵AC=EF,AC=AD,∴EF=AD.∴四邊形ADFE是平行四邊形.考點:1.全等三角形的判定與性質;2.等邊三角形的性質;3.平行四邊形的判定.22、當x=-1時,原式=;當x=1時,原式=【解析】
先將括號外的分式進行因式分解,再把括號內的分式通分,然后按照分式的除法法則,將除法轉化為乘法進行計算.【詳解】原式===∵-<x<,且x為整數,∴若使分式有意義,x只能取-1和1當x=1時,原式=.或:當x=-1時,原式=123、(1)時,S最大為(1)(-1,1)或或或(1,-1)【解析】試題分析:(1)先假設出函數解析式,利用三點法求解函數解析式.(2)設出M點的坐標,利用S=S△AOM+S△OBM﹣S△AOB即可進行解答;(1)當OB是平行四邊形的邊時,表示出PQ的長,再根據平行四邊形的對邊相等列出方程求解即可;當OB是對角線時,由圖可知點A與P應該重合,即可得出結論.試題解析:解:(1)設此拋物線的函數解析式為:y=ax2+bx+c(a≠0),將A(-1,0),B(0,-1),C(1,0)三點代入函數解析式得:解得,所以此函數解析式為:.(2)∵M點的橫坐標為m,且點M在這條拋物線上,∴M點的坐標為:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024工業(yè)產品購銷合同
- 2024貨物出口合同(SalesContract)范文2
- 2024勞動合同危害告知書
- 2024年全麥面包項目合作計劃書
- 滬教版三年級下冊數學第二單元 用兩位數乘除 測試卷及參考答案(a卷)
- 滬教版三年級下冊數學第二單元 用兩位數乘除 測試卷及答案【奪冠】
- 滬教版四年級下冊數學第二單元 小數的認識與加減法 測試卷附完整答案【易錯題】
- 2024【安全施工合同標準范本】采購合同標準范本2
- 海工防腐(非晶合金)生產項目環(huán)評報告表
- 《食品安全法及實施條例》練習卷含答案
- 白蛋白在臨床營養(yǎng)中的合理應用
- 中小學課外輔導機構創(chuàng)業(yè)計劃書
- 群落的結構++第1課時++群落的物種組成課件 高二上學期生物人教版(2019)選擇性必修2
- 臨床決策分析課件
- 外科學(1)智慧樹知到答案章節(jié)測試2023年溫州醫(yī)科大學
- DBJ15302023年廣東省鋁合金門窗工程設計、施工及驗收規(guī)范
- 兒童口腔醫(yī)學課件 乳牙活髓切斷術及預成冠修復術
- 風險加權資產
- 涉及人血液、尿液標本采集知情同意書模板
- GB/T 9797-2022金屬及其他無機覆蓋層鎳、鎳+鉻、銅+鎳和銅+鎳+鉻電鍍層
- JJF 1183-2007溫度變送器校準規(guī)范
評論
0/150
提交評論