永嘉縣烏牛一中2023屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁
永嘉縣烏牛一中2023屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁
永嘉縣烏牛一中2023屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁
永嘉縣烏牛一中2023屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁
永嘉縣烏牛一中2023屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.1﹣的相反數(shù)是()A.1﹣ B.﹣1 C. D.﹣12.某校八(2)班6名女同學(xué)的體重(單位:kg)分別為35,36,38,40,42,42,則這組數(shù)據(jù)的中位數(shù)是()A.38 B.39 C.40 D.423.如圖,AB∥CD,∠1=45°,∠3=80°,則∠2的度數(shù)為()A.30° B.35° C.40° D.45°4.下列運(yùn)算正確的是()A.=x5 B. C.·= D.3+25.今年,我省啟動了“關(guān)愛留守兒童工程”.某村小為了了解各年級留守兒童的數(shù)量,對一到六年級留守兒童數(shù)量進(jìn)行了統(tǒng)計(jì),得到每個(gè)年級的留守兒童人數(shù)分別為10,15,10,17,18,1.對于這組數(shù)據(jù),下列說法錯(cuò)誤的是()A.平均數(shù)是15 B.眾數(shù)是10 C.中位數(shù)是17 D.方差是6.若二元一次方程組的解為則的值為()A.1 B.3 C. D.7.如圖,從一塊圓形紙片上剪出一個(gè)圓心角為90°的扇形ABC,使點(diǎn)A、B、C在圓周上,

將剪下的扇形作為一個(gè)圓錐側(cè)面,如果圓錐的高為,則這塊圓形紙片的直徑為(

)A.12cm B.20cm C.24cm D.28cm8.下列交通標(biāo)志是中心對稱圖形的為()A. B. C. D.9.一元二次方程x2+2x﹣15=0的兩個(gè)根為()A.x1=﹣3,x2=﹣5B.x1=3,x2=5C.x1=3,x2=﹣5D.x1=﹣3,x2=510.把邊長相等的正六邊形ABCDEF和正五邊形GHCDL的CD邊重合,按照如圖所示的方式疊放在一起,延長LG交AF于點(diǎn)P,則∠APG=()A.141° B.144° C.147° D.150°11.已知,則的值為A. B. C. D.12.小紅上學(xué)要經(jīng)過兩個(gè)十字路口,每個(gè)路口遇到紅、綠燈的機(jī)會都相同,小紅希望上學(xué)時(shí)經(jīng)過每個(gè)路口都是綠燈,但實(shí)際這樣的機(jī)會是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.若,則=.14.如圖,已知點(diǎn)A是反比例函數(shù)的圖象上的一個(gè)動點(diǎn),連接OA,若將線段OA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段OB,則點(diǎn)B所在圖象的函數(shù)表達(dá)式為______.15.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點(diǎn)E、F,連結(jié)BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①△DFP~△BPH;②;③PD2=PH?CD;④,其中正確的是______(寫出所有正確結(jié)論的序號).16.一個(gè)圓錐的側(cè)面展開圖是半徑為8cm、圓心角為120°的扇形,則此圓錐底面圓的半徑為________.17.函數(shù)y=+的自變量x的取值范圍是_____.18.已知拋物線y=x2-x-1與x軸的一個(gè)交點(diǎn)為(m,0),則代數(shù)式m2-m+2017的值為____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB是⊙O直徑,BC⊥AB于點(diǎn)B,點(diǎn)C是射線BC上任意一點(diǎn),過點(diǎn)C作CD切⊙O于點(diǎn)D,連接AD.求證:BC=CD;若∠C=60°,BC=3,求AD的長.20.(6分)央視熱播節(jié)目“朗讀者”激發(fā)了學(xué)生的閱讀興趣,某校為滿足學(xué)生的閱讀需求,欲購進(jìn)一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會成員隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,被調(diào)查學(xué)生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計(jì)圖(未完成),請根據(jù)圖中信息,解答下列問題:此次共調(diào)查了名學(xué)生;將條形統(tǒng)計(jì)圖1補(bǔ)充完整;圖2中“小說類”所在扇形的圓心角為度;若該校共有學(xué)生2000人,估計(jì)該校喜歡“社科類”書籍的學(xué)生人數(shù).21.(6分)解方程:xx+1+222.(8分)(1)(﹣2)2+2sin45°﹣(2)解不等式組,并將其解集在如圖所示的數(shù)軸上表示出來.23.(8分)如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作發(fā)現(xiàn)如圖1,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn).當(dāng)點(diǎn)D恰好落在BC邊上時(shí),填空:線段DE與AC的位置關(guān)系是;②設(shè)△BDC的面積為S1,△AEC的面積為S1.則S1與S1的數(shù)量關(guān)系是.猜想論證當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1與S1的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想.拓展探究已知∠ABC=60°,點(diǎn)D是其角平分線上一點(diǎn),BD=CD=4,OE∥AB交BC于點(diǎn)E(如圖4),若在射線BA上存在點(diǎn)F,使S△DCF=S△BDC,請直接寫出相應(yīng)的BF的長24.(10分)某地區(qū)教育部門為了解初中數(shù)學(xué)課堂中學(xué)生參與情況,并按“主動質(zhì)疑、獨(dú)立思考、專注聽講、講解題目”四個(gè)項(xiàng)目進(jìn)行評價(jià).檢測小組隨機(jī)抽查部分學(xué)校若干名學(xué)生,并將抽查學(xué)生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖(均不完整).請根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:本次抽查的樣本容量是

;在扇形統(tǒng)計(jì)圖中,“主動質(zhì)疑”對應(yīng)的圓心角為

度;將條形統(tǒng)計(jì)圖補(bǔ)充完整;如果該地區(qū)初中學(xué)生共有60000名,那么在課堂中能“獨(dú)立思考”的學(xué)生約有多少人?25.(10分)如圖,點(diǎn)D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求證:AB=EF.26.(12分)某數(shù)學(xué)興趣小組為測量如圖(①所示的一段古城墻的高度,設(shè)計(jì)用平面鏡測量的示意圖如圖②所示,點(diǎn)P處放一水平的平面鏡,光線從點(diǎn)A出發(fā)經(jīng)過平面鏡反射后剛好射到古城墻CD的頂端C處.已知AB⊥BD、CD⊥BD,且測得AB=1.2m,BP=1.8m.PD=12m,求該城墻的高度(平面鏡的原度忽略不計(jì)):請你設(shè)計(jì)一個(gè)測量這段古城墻高度的方案.要求:①面出示意圖(不要求寫畫法);②寫出方案,給出簡要的計(jì)算過程:③給出的方案不能用到圖②的方法.27.(12分)對于平面直角坐標(biāo)系中的點(diǎn),將它的縱坐標(biāo)與橫坐標(biāo)的比稱為點(diǎn)的“理想值”,記作.如的“理想值”.(1)①若點(diǎn)在直線上,則點(diǎn)的“理想值”等于_______;②如圖,,的半徑為1.若點(diǎn)在上,則點(diǎn)的“理想值”的取值范圍是_______.(2)點(diǎn)在直線上,的半徑為1,點(diǎn)在上運(yùn)動時(shí)都有,求點(diǎn)的橫坐標(biāo)的取值范圍;(3),是以為半徑的上任意一點(diǎn),當(dāng)時(shí),畫出滿足條件的最大圓,并直接寫出相應(yīng)的半徑的值.(要求畫圖位置準(zhǔn)確,但不必尺規(guī)作圖)

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

根據(jù)相反數(shù)的的定義解答即可.【詳解】根據(jù)a的相反數(shù)為-a即可得,1﹣的相反數(shù)是﹣1.故選B.【點(diǎn)睛】本題考查了相反數(shù)的定義,熟知相反數(shù)的定義是解決問題的關(guān)鍵.2、B【解析】

根據(jù)中位數(shù)的定義求解,把數(shù)據(jù)按大小排列,第3、4個(gè)數(shù)的平均數(shù)為中位數(shù).【詳解】解:由于共有6個(gè)數(shù)據(jù),

所以中位數(shù)為第3、4個(gè)數(shù)的平均數(shù),即中位數(shù)為=39,

故選:B.【點(diǎn)睛】本題主要考查了中位數(shù).要明確定義:將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,若這組數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則最中間的那個(gè)數(shù)叫做這組數(shù)據(jù)的中位數(shù);若這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則最中間兩個(gè)數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).3、B【解析】分析:根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)解答即可.詳解:如圖,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故選B.點(diǎn)睛:此題考查平行線的性質(zhì),關(guān)鍵是根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)解答.4、B【解析】

根據(jù)冪的運(yùn)算法則及整式的加減運(yùn)算即可判斷.【詳解】A.=x6,故錯(cuò)誤;B.,正確;C.·=,故錯(cuò)誤;D.3+2不能合并,故錯(cuò)誤,故選B.【點(diǎn)睛】此題主要考查整式的加減及冪的運(yùn)算,解題的關(guān)鍵是熟知其運(yùn)算法則.5、C【解析】

解:中位數(shù)應(yīng)該是15和17的平均數(shù)16,故C選項(xiàng)錯(cuò)誤,其他選擇正確.故選C.【點(diǎn)睛】本題考查求中位數(shù),眾數(shù),方差,理解相關(guān)概念是本題的解題關(guān)鍵.6、D【解析】

先解方程組求出,再將代入式中,可得解.【詳解】解:,得,所以,因?yàn)樗?故選D.【點(diǎn)睛】本題考查二元一次方程組的解,解題的關(guān)鍵是觀察兩方程的系數(shù),從而求出a-b的值,本題屬于基礎(chǔ)題型.7、C【解析】

設(shè)這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,利用等腰直徑三角形的性質(zhì)得到AB=R,利用圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長等于圓錐底面的周長得到2πr=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到這塊圓形紙片的直徑.【詳解】設(shè)這塊圓形紙片的半徑為R,圓錐的底面圓的半徑為r,則AB=R,根據(jù)題意得:2πr=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以這塊圓形紙片的直徑為24cm.故選C.【點(diǎn)睛】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.8、C【解析】

根據(jù)中心對稱圖形的定義即可解答.【詳解】解:A、屬于軸對稱圖形,不是中心對稱的圖形,不合題意;

B、是中心對稱的圖形,但不是交通標(biāo)志,不符合題意;

C、屬于軸對稱圖形,屬于中心對稱的圖形,符合題意;

D、不是中心對稱的圖形,不合題意.

故選C.【點(diǎn)睛】本題考查中心對稱圖形的定義:繞對稱中心旋轉(zhuǎn)180度后所得的圖形與原圖形完全重合.9、C【解析】

運(yùn)用配方法解方程即可.【詳解】解:x2+2x﹣15=x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故選擇C.【點(diǎn)睛】本題考查了解一元二次方程,選擇合適的解方程方法是解題關(guān)鍵.10、B【解析】

先根據(jù)多邊形的內(nèi)角和公式分別求得正六邊形和正五邊形的每一個(gè)內(nèi)角的度數(shù),再根據(jù)多邊形的內(nèi)角和公式求得∠APG的度數(shù).【詳解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故選B.【點(diǎn)睛】本題考查了多邊形內(nèi)角與外角,關(guān)鍵是熟悉多邊形內(nèi)角和定理:(n﹣2)?180(n≥3)且n為整數(shù)).11、C【解析】由題意得,4?x?0,x?4?0,解得x=4,則y=3,則=,故選:C.12、C【解析】

列舉出所有情況,看每個(gè)路口都是綠燈的情況數(shù)占總情況數(shù)的多少即可得.【詳解】畫樹狀圖如下,共4種情況,有1種情況每個(gè)路口都是綠燈,所以概率為.故選C.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1.【解析】試題分析:有意義,必須,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案為1.考點(diǎn):二次根式有意義的條件.14、【解析】∵點(diǎn)A是反比例函數(shù)的圖象上的一個(gè)動點(diǎn),設(shè)A(m,n),過A作AC⊥x軸于C,過B作BD⊥x軸于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO與△ODB中,∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴點(diǎn)B所在圖象的函數(shù)表達(dá)式為,故答案為:.15、①②③【解析】

依據(jù)∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH;依據(jù)△DFP∽△BPH,可得,再根據(jù)BP=CP=CD,即可得到;判定△DPH∽△CPD,可得,即PD2=PH?CP,再根據(jù)CP=CD,即可得出PD2=PH?CD;根據(jù)三角形面積計(jì)算公式,結(jié)合圖形得到△BPD的面積=△BCP的面積+△CDP面積﹣△BCD的面積,即可得出.【詳解】∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故①正確;∵∠DCF=90°﹣60°=30°,∴tan∠DCF=,∵△DFP∽△BPH,∴,∵BP=CP=CD,∴,故②正確;∵PC=DC,∠DCP=30°,∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°,∴∠DHP=∠CDP,而∠DPH=∠CPD,∴△DPH∽△CPD,∴,即PD2=PH?CP,又∵CP=CD,∴PD2=PH?CD,故③正確;如圖,過P作PM⊥CD,PN⊥BC,設(shè)正方形ABCD的邊長是4,△BPC為正三角形,則正方形ABCD的面積為16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB?sin60°=4×=2,PM=PC?sin30°=2,∵S△BPD=S四邊形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴,故④錯(cuò)誤,故答案為:①②③.【點(diǎn)睛】本題考查了正方形的性質(zhì)、相似三角形的判定與性質(zhì)、解直角三角形等知識,正確添加輔助線、靈活運(yùn)用相關(guān)的性質(zhì)定理與判定定理是解題的關(guān)鍵.16、cm【解析】試題分析:把扇形的弧長等于圓錐底面周長作為相等關(guān)系,列方程求解.設(shè)此圓錐的底面半徑為r,根據(jù)圓錐的側(cè)面展開圖扇形的弧長等于圓錐底面周長可得,2πr=,r=cm.考點(diǎn):圓錐側(cè)面展開扇形與底面圓之間的關(guān)系17、x≥1且x≠3【解析】

根據(jù)二次根式的有意義和分式有意義的條件,列出不等式求解即可.【詳解】根據(jù)二次根式和分式有意義的條件可得:解得:且故答案為:且【點(diǎn)睛】考查自變量的取值范圍,掌握二次根式和分式有意義的條件是解題的關(guān)鍵.18、1【解析】

把點(diǎn)(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,代入即可求出答案.【詳解】∵二次函數(shù)y=x2﹣x﹣1的圖象與x軸的一個(gè)交點(diǎn)為(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2017=1+2017=1.故答案為:1.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn)問題,求代數(shù)式的值的應(yīng)用,解答此題的關(guān)鍵是求出m2﹣m=1,難度適中.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2).【解析】

(1)根據(jù)切線的判定定理得到BC是⊙O的切線,再利用切線長定理證明即可;(2)根據(jù)含30°的直角三角形的性質(zhì)、正切的定義計(jì)算即可.【詳解】(1)∵AB是⊙O直徑,BC⊥AB,∴BC是⊙O的切線,∵CD切⊙O于點(diǎn)D,∴BC=CD;(2)連接BD,∵BC=CD,∠C=60°,∴△BCD是等邊三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直徑,∴∠ADB=90°,∴AD=BD?tan∠ABD=.【點(diǎn)睛】本題考查了切線的性質(zhì)、直角三角形的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.20、(1)200;(2)見解析;(3)126°;(4)240人.【解析】

(1)根據(jù)文史類的人數(shù)以及文史類所占的百分比即可求出總?cè)藬?shù)(2)根據(jù)總?cè)藬?shù)以及生活類的百分比即可求出生活類的人數(shù)以及小說類的人數(shù);(3)根據(jù)小說類的百分比即可求出圓心角的度數(shù);(4)利用樣本中喜歡社科類書籍的百分比來估計(jì)總體中的百分比,從而求出喜歡社科類書籍的學(xué)生人數(shù)【詳解】(1)∵喜歡文史類的人數(shù)為76人,占總?cè)藬?shù)的38%,∴此次調(diào)查的總?cè)藬?shù)為:76÷38%=200人,故答案為200;(2)∵喜歡生活類書籍的人數(shù)占總?cè)藬?shù)的15%,∴喜歡生活類書籍的人數(shù)為:200×15%=30人,∴喜歡小說類書籍的人數(shù)為:200﹣24﹣76﹣30=70人,如圖所示:(3)∵喜歡社科類書籍的人數(shù)為:24人,∴喜歡社科類書籍的人數(shù)占了總?cè)藬?shù)的百分比為:×100%=12%,∴喜歡小說類書籍的人數(shù)占了總分?jǐn)?shù)的百分比為:100%﹣15%﹣38%﹣12%=35%,∴小說類所在圓心角為:360°×35%=126°;(4)由樣本數(shù)據(jù)可知喜歡“社科類”書籍的學(xué)生人數(shù)占了總?cè)藬?shù)的12%,∴該校共有學(xué)生2000人,估計(jì)該校喜歡“社科類”書籍的學(xué)生人數(shù):2000×12%=240人.【點(diǎn)睛】此題考查扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,看懂圖中數(shù)據(jù)是解題關(guān)鍵21、-3【解析】試題分析:解得x=-3經(jīng)檢驗(yàn):x=-3是原方程的根.∴原方程的根是x=-3考點(diǎn):解一元一次方程點(diǎn)評:在中考中比較常見,在各種題型中均有出現(xiàn),一般難度不大,要熟練掌握.22、(1)4﹣5;﹣<x≤2,在數(shù)軸上表示見解析【解析】

(1)此題涉及乘方、特殊角的三角函數(shù)、負(fù)整數(shù)指數(shù)冪和二次根式的化簡,首先針對各知識點(diǎn)進(jìn)行計(jì)算,再計(jì)算實(shí)數(shù)的加減即可;(2)首先解出兩個(gè)不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集.【詳解】解:(1)原式=4+2×﹣2×3=4+﹣6=4﹣5;(2),解①得:x>﹣,解②得:x≤2,不等式組的解集為:﹣<x≤2,在數(shù)軸上表示為:.【點(diǎn)睛】此題主要考查了解一元一次不等式組,以實(shí)數(shù)的運(yùn)算,關(guān)鍵是正確確定兩個(gè)不等式的解集,掌握特殊角的三角函數(shù)值.23、解:(1)①DE∥AC.②.(1)仍然成立,證明見解析;(3)3或2.【解析】

(1)①由旋轉(zhuǎn)可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等邊三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②過D作DN⊥AC交AC于點(diǎn)N,過E作EM⊥AC交AC延長線于M,過C作CF⊥AB交AB于點(diǎn)F.由①可知:△ADC是等邊三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如圖,過點(diǎn)D作DM⊥BC于M,過點(diǎn)A作AN⊥CE交EC的延長線于N,

∵△DEC是由△ABC繞點(diǎn)C旋轉(zhuǎn)得到,

∴BC=CE,AC=CD,

∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,

∴∠ACN=∠DCM,

∵在△ACN和△DCM中,,

∴△ACN≌△DCM(AAS),

∴AN=DM,

∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),

即S1=S1;(3)如圖,過點(diǎn)D作DF1∥BE,易求四邊形BEDF1是菱形,

所以BE=DF1,且BE、DF1上的高相等,

此時(shí)S△DCF1=S△BDE;

過點(diǎn)D作DF1⊥BD,

∵∠ABC=20°,F(xiàn)1D∥BE,

∴∠F1F1D=∠ABC=20°,

∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,

∴∠F1DF1=∠ABC=20°,

∴△DF1F1是等邊三角形,

∴DF1=DF1,過點(diǎn)D作DG⊥BC于G,

∵BD=CD,∠ABC=20°,點(diǎn)D是角平分線上一點(diǎn),

∴∠DBC=∠DCB=×20°=30°,BG=BC=,

∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,

∠CDF1=320°-150°-20°=150°,

∴∠CDF1=∠CDF1,

∵在△CDF1和△CDF1中,,

∴△CDF1≌△CDF1(SAS),

∴點(diǎn)F1也是所求的點(diǎn),

∵∠ABC=20°,點(diǎn)D是角平分線上一點(diǎn),DE∥AB,

∴∠DBC=∠BDE=∠ABD=×20°=30°,

又∵BD=3,

∴BE=×3÷cos30°=3,

∴BF1=3,BF1=BF1+F1F1=3+3=2,

故BF的長為3或2.24、(1)560;(2)54;(3)補(bǔ)圖見解析;(4)18000人【解析】

(1)本次調(diào)查的樣本容量為224÷40%=560(人);(2)“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)是:360°×84560=54o;(3)“講解題目”的人數(shù)是:560?84?168?224=84(人).(4)60000×=18000(人),

答:在課堂中能“獨(dú)立思考”的學(xué)生約有18000人.25、見解析【解析】試題分析:依據(jù)題意,可通過證△ABC≌△EFD來得出AB=EF的結(jié)論,兩三角形中,已知的條件有AB∥EF即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根據(jù)AAS判定兩三角形全等解題.

證明:∵AB∥EF,∴∠B=∠F.又∵BD=CF,∴BC=FD.在△ABC與△EFD中,∴△ABC≌△EFD(AAS),∴AB=EF.26、(1)8m;(2)答案不唯一【解析】

(1)根據(jù)入射角等于反射角可得∠APB=∠CPD,由AB⊥BD、CD⊥BD可得到∠ABP=∠CDP=90°,從而可證得三角形相似,根據(jù)相似三角形的性質(zhì)列出比例式,即可求出CD的長.(2)設(shè)計(jì)成視角問題求古城墻的高度.【詳解】(1)解:由題意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴,∴CD==8.答:該古城墻的高度為8m(2)解:答案不唯一,如:如圖,在距這段古城墻底部am的E處,用高h(yuǎn)(m)的測角儀DE測得這段古城墻頂端A的仰角為α.即可測量這段古城墻AB的高度,過點(diǎn)D作

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論