高中數(shù)學(xué)必修五全套教案_第1頁
高中數(shù)學(xué)必修五全套教案_第2頁
高中數(shù)學(xué)必修五全套教案_第3頁
高中數(shù)學(xué)必修五全套教案_第4頁
高中數(shù)學(xué)必修五全套教案_第5頁
已閱讀5頁,還剩107頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

------------------------------------------------------------------------高中數(shù)學(xué)必修五全套教案[探索研究]在初中,我們已學(xué)過如何解直角三角形,下面就首先來探討直角三角形中,角與邊的等式關(guān)系。如圖1.1-2,在RtABC中,設(shè)BC=a,AC=b,AB=c,根據(jù)銳角三角函數(shù)中正弦函數(shù)的定義,有,,又,則bc從而在直角三角形ABC中,CaB(圖1.1-2)思考:那么對(duì)于任意的三角形,以上關(guān)系式是否仍然成立?(由學(xué)生討論、分析) 可分為銳角三角形和鈍角三角形兩種情況:如圖1.1-3,當(dāng)ABC是銳角三角形時(shí),設(shè)邊AB上的高是CD,根據(jù)任意角三角函數(shù)的定義,有CD=,則,C同理可得,ba從而AcB(圖1.1-3)正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,即[理解定理](1)正弦定理說明同一三角形中,邊與其對(duì)角的正弦成正比,且比例系數(shù)為同一正數(shù),即存在正數(shù)k使,,;(2)等價(jià)于,,從而知正弦定理的基本作用為:①已知三角形的任意兩角及其一邊可以求其他邊,如;②已知三角形的任意兩邊與其中一邊的對(duì)角可以求其他角的正弦值,如。一般地,已知三角形的某些邊和角,求其他的邊和角的過程叫作解三角形。[例題分析]例1.在中,已知,,cm,解三角形。解:根據(jù)三角形內(nèi)角和定理, ;根據(jù)正弦定理,;根據(jù)正弦定理,評(píng)述:對(duì)于解三角形中的復(fù)雜運(yùn)算可使用計(jì)算器。例2.在中,已知cm,cm,,解三角形(角度精確到,邊長(zhǎng)精確到1cm)。解:根據(jù)正弦定理, 因?yàn)椋迹迹?,或⑴?dāng)時(shí),,⑵當(dāng)時(shí),,[補(bǔ)充練習(xí)]已知ABC中,,求(答案:1:2:3)(2)正弦定理的應(yīng)用范圍:①已知兩角和任一邊,求其它兩邊及一角;②已知兩邊和其中一邊對(duì)角,求另一邊的對(duì)角。聯(lián)系已經(jīng)學(xué)過的知識(shí)和方法,可用什么途徑來解決這個(gè)問題?用正弦定理試求,發(fā)現(xiàn)因A、B均未知,所以較難求邊c。由于涉及邊長(zhǎng)問題,從而可以考慮用向量來研究這個(gè)問題。A如圖1.1-5,設(shè),,,那么,則CB從而(圖1.1-5)同理可證于是得到以下定理余弦定理:三角形中任何一邊的平方等于其他兩邊的平方的和減去這兩邊與它們的夾角的余弦的積的兩倍。即思考:這個(gè)式子中有幾個(gè)量?從方程的角度看已知其中三個(gè)量,可以求出第四個(gè)量,能否由三邊求出一角?(由學(xué)生推出)從余弦定理,又可得到以下推論:[理解定理]從而知余弦定理及其推論的基本作用為:①已知三角形的任意兩邊及它們的夾角就可以求出第三邊;②已知三角形的三條邊就可以求出其它角。思考:勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個(gè)定理之間的關(guān)系?(由學(xué)生總結(jié))若ABC中,C=,則,這時(shí)由此可知余弦定理是勾股定理的推廣,勾股定理是余弦定理的特例。[例題分析]例1.在ABC中,已知,,,求b及A⑴解:∵=cos==∴求可以利用余弦定理,也可以利用正弦定理:⑵解法一:∵cos ∴例2.在ABC中,已知,,,解三角形解:由余弦定理的推論得:cos ;cos ;[補(bǔ)充練習(xí)]在ABC中,若,求角A(答案:A=120)Ⅳ.課時(shí)小結(jié)(1)余弦定理是任何三角形邊角之間存在的共同規(guī)律,勾股定理是余弦定理的特例;(2)余弦定理的應(yīng)用范圍:①.已知三邊求三角;②.已知兩邊及它們的夾角,求第三邊。[隨堂練習(xí)1](1)在ABC中,已知,,,試判斷此三角形的解的情況。(2)在ABC中,若,,,則符合題意的b的值有_____個(gè)。(3)在ABC中,,,,如果利用正弦定理解三角形有兩解,求x的取值范圍。(答案:(1)有兩解;(2)0;(3))2.在ABC中,已知,,,判斷ABC的類型。分析:由余弦定理可知(注意:)解:,即,∴。[隨堂練習(xí)2](1)在ABC中,已知,判斷ABC的類型。(2)已知ABC滿足條件,判斷ABC的類型。(答案:(1);(2)ABC是等腰或直角三角形)2.在ABC中,,,面積為,求的值分析:可利用三角形面積定理以及正弦定理解:由得,則=3,即,從而Ⅲ.課堂練習(xí)(1)在ABC中,若,,且此三角形的面積,求角C(2)在ABC中,其三邊分別為a、b、c,且三角形的面積,求角C(答案:(1)或;(2))Ⅳ.課時(shí)小結(jié)(1)在已知三角形的兩邊及其中一邊的對(duì)角解三角形時(shí),有兩解或一解或無解等情形;(2)三角形各種類型的判定方法; (3)三角形面積定理的應(yīng)用。Ⅴ.課后作業(yè)(1)在ABC中,已知,,,試判斷此三角形的解的情況。(2)設(shè)x、x+1、x+2是鈍角三角形的三邊長(zhǎng),求實(shí)數(shù)x的取值范圍。(3)在ABC中,,,,判斷ABC的形狀。(4)三角形的兩邊分別為3cm,5cm,它們所夾的角的余弦為方程的根,求這個(gè)三角形的面積。例1、如圖,一艘海輪從A出發(fā),沿北偏東75的方向航行67.5nmile后到達(dá)海島B,然后從B出發(fā),沿北偏東32的方向航行54.0nmile后達(dá)到海島C.如果下次航行直接從A出發(fā)到達(dá)C,此船應(yīng)該沿怎樣的方向航行,需要航行多少距離?(角度精確到0.1,距離精確到0.01nmile)解:在ABC中,ABC=180-75+32=137,根據(jù)余弦定理,AC==≈113.15根據(jù)正弦定理,=sinCAB==≈0.3255,所以CAB=19.0,75-CAB=56.0答:此船應(yīng)該沿北偏東56.1的方向航行,需要航行113.15nmile補(bǔ)充例2、某巡邏艇在A處發(fā)現(xiàn)北偏東45相距9海里的C處有一艘走私船,正沿南偏東75的方向以10海里/小時(shí)的速度向我海岸行駛,巡邏艇立即以14海里/小時(shí)的速度沿著直線方向追去,問巡邏艇應(yīng)該沿什么方向去追?需要多少時(shí)間才追趕上該走私船?解:如圖,設(shè)該巡邏艇沿AB方向經(jīng)過x小時(shí)后在B處追上走私船,則CB=10x,AB=14x,AC=9,ACB=+=(14x)=9+(10x)-2910xcos化簡(jiǎn)得32x-30x-27=0,即x=,或x=-(舍去)所以BC=10x=15,AB=14x=21,又因?yàn)閟inBAC===BAC=38,或BAC=141(鈍角不合題意,舍去),38+=83答:巡邏艇應(yīng)該沿北偏東83方向去追,經(jīng)過1.4小時(shí)才追趕上該走私船.評(píng)注:在求解三角形中,我們可以根據(jù)正弦函數(shù)的定義得到兩個(gè)解,但作為有關(guān)現(xiàn)實(shí)生活的應(yīng)用題,必須檢驗(yàn)上述所求的解是否符合實(shí)際意義,從而得出實(shí)際問題的解Ⅳ.課時(shí)小結(jié)解三角形的應(yīng)用題時(shí),通常會(huì)遇到兩種情況:(1)已知量與未知量全部集中在一個(gè)三角形中,依次利用正弦定理或余弦定理解之。(2)已知量與未知量涉及兩個(gè)或幾個(gè)三角形,這時(shí)需要選擇條件足夠的三角形優(yōu)先研究,再逐步在其余的三角形中求出問題的解。例7、在ABC中,根據(jù)下列條件,求三角形的面積S(精確到0.1cm)(1)已知a=14.8cm,c=23.5cm,B=148.5;(2)已知B=62.7,C=65.8,b=3.16cm;(3)已知三邊的長(zhǎng)分別為a=41.4cm,b=27.3cm,c=38.7cm解:(1)應(yīng)用S=acsinB,得S=14.823.5sin148.5≈90.9(cm)(2)根據(jù)正弦定理,=c=S=bcsinA=bA=180-(B+C)=180-(62.7+65.8)=51.5S=3.16≈4.0(cm)(3)根據(jù)余弦定理的推論,得cosB==≈0.7697sinB=≈≈0.6384應(yīng)用S=acsinB,得S≈41.438.70.6384≈511.4(cm)例3、在ABC中,求證:(1)(2)++=2(bccosA+cacosB+abcosC)證明:(1)根據(jù)正弦定理,可設(shè)===k顯然k0,所以左邊===右邊(2)根據(jù)余弦定理的推論,右邊=2(bc+ca+ab)=(b+c-a)+(c+a-b)+(a+b-c)=a+b+c=左邊變式練習(xí)1:已知在ABC中,B=30,b=6,c=6,求a及ABC的面積S提示:解有關(guān)已知兩邊和其中一邊對(duì)角的問題,注重分情況討論解的個(gè)數(shù)。答案:a=6,S=9;a=12,S=18Ⅳ.課時(shí)小結(jié)利用正弦定理或余弦定理將已知條件轉(zhuǎn)化為只含邊的式子或只含角的三角函數(shù)式,然后化簡(jiǎn)并考察邊或角的關(guān)系,從而確定三角形的形狀。特別是有些條件既可用正弦定理也可用余弦定理甚至可以兩者混用。⒈數(shù)列的定義:按一定次序排列的一列數(shù)叫做數(shù)列.注意:⑴數(shù)列的數(shù)是按一定次序排列的,因此,如果組成兩個(gè)數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的數(shù)列;⑵定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,同一個(gè)數(shù)在數(shù)列中可以重復(fù)出現(xiàn).⒉數(shù)列的項(xiàng):數(shù)列中的每一個(gè)數(shù)都叫做這個(gè)數(shù)列的項(xiàng).各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng)),第2項(xiàng),…,第n項(xiàng),….例如,上述例子均是數(shù)列,其中①中,“4”是這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng)),“9”是這個(gè)數(shù)列中的第6項(xiàng).⒊數(shù)列的一般形式:,或簡(jiǎn)記為,其中是數(shù)列的第n項(xiàng)結(jié)合上述例子,幫助學(xué)生理解數(shù)列及項(xiàng)的定義.②中,這是一個(gè)數(shù)列,它的首項(xiàng)是“1”,“”是這個(gè)數(shù)列的第“3”項(xiàng),等等下面我們?cè)賮砜催@些數(shù)列的每一項(xiàng)與這一項(xiàng)的序號(hào)是否有一定的對(duì)應(yīng)關(guān)系?這一關(guān)系可否用一個(gè)公式表示?(引導(dǎo)學(xué)生進(jìn)一步理解數(shù)列與項(xiàng)的定義,從而發(fā)現(xiàn)數(shù)列的通項(xiàng)公式)對(duì)于上面的數(shù)列②,第一項(xiàng)與這一項(xiàng)的序號(hào)有這樣的對(duì)應(yīng)關(guān)系:項(xiàng)↓↓↓↓↓序號(hào)12345這個(gè)數(shù)的第一項(xiàng)與這一項(xiàng)的序號(hào)可用一個(gè)公式:來表示其對(duì)應(yīng)關(guān)系即:只要依次用1,2,3…代替公式中的n,就可以求出該數(shù)列相應(yīng)的各項(xiàng)結(jié)合上述其他例子,練習(xí)找其對(duì)應(yīng)關(guān)系⒋數(shù)列的通項(xiàng)公式:如果數(shù)列的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式來表示,那么這個(gè)公式就叫做這個(gè)數(shù)列的通項(xiàng)公式.注意:⑴并不是所有數(shù)列都能寫出其通項(xiàng)公式,如上述數(shù)列④;⑵一個(gè)數(shù)列的通項(xiàng)公式有時(shí)是不唯一的,如數(shù)列:1,0,1,0,1,0,…它的通項(xiàng)公式可以是,也可以是.⑶數(shù)列通項(xiàng)公式的作用:①求數(shù)列中任意一項(xiàng);②檢驗(yàn)?zāi)硵?shù)是否是該數(shù)列中的一項(xiàng).數(shù)列的通項(xiàng)公式具有雙重身份,它表示了數(shù)列的第項(xiàng),又是這個(gè)數(shù)列中所有各項(xiàng)的一般表示.通項(xiàng)公式反映了一個(gè)數(shù)列項(xiàng)與項(xiàng)數(shù)的函數(shù)關(guān)系,給了數(shù)列的通項(xiàng)公式,這個(gè)數(shù)列便確定了,代入項(xiàng)數(shù)就可求出數(shù)列的每一項(xiàng).5.數(shù)列與函數(shù)的關(guān)系數(shù)列可以看成以正整數(shù)集N*(或它的有限子集{1,2,3,…,n})為定義域的函數(shù),當(dāng)自變量從小到大依次取值時(shí)對(duì)應(yīng)的一列函數(shù)值。反過來,對(duì)于函數(shù)y=f(x),如果f(i)(i=1、2、3、4…)有意義,那么我們可以得到一個(gè)數(shù)列f(1)、f(2)、f(3)、f(4)…,f(n),…6.?dāng)?shù)列的分類:1)根據(jù)數(shù)列項(xiàng)數(shù)的多少分:有窮數(shù)列:項(xiàng)數(shù)有限的數(shù)列.例如數(shù)列1,2,3,4,5,6。是有窮數(shù)列無窮數(shù)列:項(xiàng)數(shù)無限的數(shù)列.例如數(shù)列1,2,3,4,5,6…是無窮數(shù)列2)根據(jù)數(shù)列項(xiàng)的大小分:遞增數(shù)列:從第2項(xiàng)起,每一項(xiàng)都不小于它的前一項(xiàng)的數(shù)列。遞減數(shù)列:從第2項(xiàng)起,每一項(xiàng)都不大于它的前一項(xiàng)的數(shù)列。常數(shù)數(shù)列:各項(xiàng)相等的數(shù)列。擺動(dòng)數(shù)列:從第2項(xiàng)起,有些項(xiàng)大于它的前一項(xiàng),有些項(xiàng)小于它的前一項(xiàng)的數(shù)列[補(bǔ)充練習(xí)]:根據(jù)下面數(shù)列的前幾項(xiàng)的值,寫出數(shù)列的一個(gè)通項(xiàng)公式:(1)3,5,9,17,33,……;(2),,,,,……;(3)0,1,0,1,0,1,……;(4)1,3,3,5,5,7,7,9,9,……;解:(1)=2n+1;(2)=;(3)=;(4)將數(shù)列變形為1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,……,∴=n+;通項(xiàng)公式法如果數(shù)列的第n項(xiàng)與序號(hào)之間的關(guān)系可以用一個(gè)公式來表示,那么這個(gè)公式就叫做這個(gè)數(shù)列的通項(xiàng)公式。如數(shù)列的通項(xiàng)公式為;

的通項(xiàng)公式為;的通項(xiàng)公式為;圖象法啟發(fā)學(xué)生仿照函數(shù)圖象的畫法畫數(shù)列的圖形.具體方法是以項(xiàng)數(shù)為橫坐標(biāo),相應(yīng)的項(xiàng)為縱坐標(biāo),即以為坐標(biāo)在平面直角坐標(biāo)系中做出點(diǎn)(以前面提到的數(shù)列為例,做出一個(gè)數(shù)列的圖象),所得的數(shù)列的圖形是一群孤立的點(diǎn),因?yàn)闄M坐標(biāo)為正整數(shù),所以這些點(diǎn)都在軸的右側(cè),而點(diǎn)的個(gè)數(shù)取決于數(shù)列的項(xiàng)數(shù).從圖象中可以直觀地看到數(shù)列的項(xiàng)隨項(xiàng)數(shù)由小到大變化而變化的趨勢(shì).遞推公式法知識(shí)都來源于實(shí)踐,最后還要應(yīng)用于生活用其來解決一些實(shí)際問題.觀察鋼管堆放示意圖,尋其規(guī)律,建立數(shù)學(xué)模型.模型一:自上而下:第1層鋼管數(shù)為4;即:14=1+3第2層鋼管數(shù)為5;即:25=2+3第3層鋼管數(shù)為6;即:36=3+3第4層鋼管數(shù)為7;即:47=4+3第5層鋼管數(shù)為8;即:58=5+3第6層鋼管數(shù)為9;即:69=6+3第7層鋼管數(shù)為10;即:710=7+3若用表示鋼管數(shù),n表示層數(shù),則可得出每一層的鋼管數(shù)為一數(shù)列,且≤n≤7)運(yùn)用每一層的鋼筋數(shù)與其層數(shù)之間的對(duì)應(yīng)規(guī)律建立了數(shù)列模型,運(yùn)用這一關(guān)系,會(huì)很快捷地求出每一層的鋼管數(shù)這會(huì)給我們的統(tǒng)計(jì)與計(jì)算帶來很多方便。讓同學(xué)們繼續(xù)看此圖片,是否還有其他規(guī)律可循?(啟發(fā)學(xué)生尋找規(guī)律)模型二:上下層之間的關(guān)系自上而下每一層的鋼管數(shù)都比上一層鋼管數(shù)多1。即;;依此類推:(2≤n≤7)對(duì)于上述所求關(guān)系,若知其第1項(xiàng),即可求出其他項(xiàng),看來,這一關(guān)系也較為重要。遞推公式:如果已知數(shù)列的第1項(xiàng)(或前幾項(xiàng)),且任一項(xiàng)與它的前一項(xiàng)(或前n項(xiàng))間的關(guān)系可以用一個(gè)公式來表示,那么這個(gè)公式就叫做這個(gè)數(shù)列的遞推公式遞推公式也是給出數(shù)列的一種方法。如下數(shù)字排列的一個(gè)數(shù)列:3,5,8,13,21,34,55,89遞推公式為:數(shù)列可看作特殊的函數(shù),其表示也應(yīng)與函數(shù)的表示法有聯(lián)系,首先請(qǐng)學(xué)生回憶函數(shù)的表示法:列表法,圖象法,解析式法.相對(duì)于列表法表示一個(gè)函數(shù),數(shù)列有這樣的表示法:用表示第一項(xiàng),用表示第一項(xiàng),……,用表示第項(xiàng),依次寫出成為4、列表法.簡(jiǎn)記為.[范例講解]例3設(shè)數(shù)列滿足寫出這個(gè)數(shù)列的前五項(xiàng)。解:分析:題中已給出的第1項(xiàng)即,遞推公式:解:據(jù)題意可知:,[補(bǔ)充例題]例4已知,寫出前5項(xiàng),并猜想.法一:,觀察可得法二:由∴即∴∴[補(bǔ)充練習(xí)]1.根據(jù)各個(gè)數(shù)列的首項(xiàng)和遞推公式,寫出它的前五項(xiàng),并歸納出通項(xiàng)公式(1)=0,=+(2n-1)(n∈N);(2)=1,=(n∈N);(3)=3,=3-2(n∈N).解:(1)=0,=1,=4,=9,=16,∴=(n-1);(2)=1,=,=,=,=,∴=;(3)=3=1+2,=7=1+2,=19=1+2,=55=1+2,=163=1+2,∴=1+2·3;1.等差數(shù)列:一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)就叫做等差數(shù)列的公差(常用字母“d”表示)。⑴.公差d一定是由后項(xiàng)減前項(xiàng)所得,而不能用前項(xiàng)減后項(xiàng)來求;⑵.對(duì)于數(shù)列{},若-=d(與n無關(guān)的數(shù)或字母),n≥2,n∈N,則此數(shù)列是等差數(shù)列,d為公差。2.等差數(shù)列的通項(xiàng)公式:【或】等差數(shù)列定義是由一數(shù)列相鄰兩項(xiàng)之間關(guān)系而得若一等差數(shù)列的首項(xiàng)是,公差是d,則據(jù)其定義可得:即:即:即:……由此歸納等差數(shù)列的通項(xiàng)公式可得:∴已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng)和公差d,便可求得其通項(xiàng)。由上述關(guān)系還可得:即:則:=即等差數(shù)列的第二通項(xiàng)公式∴d=[范例講解]例1⑴求等差數(shù)列8,5,2…的第20項(xiàng)⑵-401是不是等差數(shù)列-5,-9,-13…的項(xiàng)?如果是,是第幾項(xiàng)?解:⑴由n=20,得⑵由得數(shù)列通項(xiàng)公式為:由題意可知,本題是要回答是否存在正整數(shù)n,使得成立解之得n=100,即-401是這個(gè)數(shù)列的第100項(xiàng)例3已知數(shù)列{}的通項(xiàng)公式,其中、是常數(shù),那么這個(gè)數(shù)列是否一定是等差數(shù)列?若是,首項(xiàng)與公差分別是什么?分析:由等差數(shù)列的定義,要判定是不是等差數(shù)列,只要看(n≥2)是不是一個(gè)與n無關(guān)的常數(shù)。解:當(dāng)n≥2時(shí),(取數(shù)列中的任意相鄰兩項(xiàng)與(n≥2))為常數(shù)∴{}是等差數(shù)列,首項(xiàng),公差為p。注:①若p=0,則{}是公差為0的等差數(shù)列,即為常數(shù)列q,q,q,…②若p≠0,則{}是關(guān)于n的一次式,從圖象上看,表示數(shù)列的各點(diǎn)均在一次函數(shù)y=px+q的圖象上,一次項(xiàng)的系數(shù)是公差,直線在y軸上的截距為q.③數(shù)列{}為等差數(shù)列的充要條件是其通項(xiàng)=pn+q(p、q是常數(shù)),稱其為第3通項(xiàng)公式。④判斷數(shù)列是否是等差數(shù)列的方法是否滿足3個(gè)通項(xiàng)公式中的一個(gè)。[補(bǔ)充練習(xí)]1.(1)求等差數(shù)列3,7,11,……的第4項(xiàng)與第10項(xiàng).分析:根據(jù)所給數(shù)列的前3項(xiàng)求得首項(xiàng)和公差,寫出該數(shù)列的通項(xiàng)公式,從而求出所求項(xiàng).解:根據(jù)題意可知:=3,d=7-3=4.∴該數(shù)列的通項(xiàng)公式為:=3+(n-1)×4,即=4n-1(n≥1,n∈N*)∴=4×4-1=15,=4×10-1=39.評(píng)述:關(guān)鍵是求出通項(xiàng)公式.(2)求等差數(shù)列10,8,6,……的第20項(xiàng).解:根據(jù)題意可知:=10,d=8-10=-2.∴該數(shù)列的通項(xiàng)公式為:=10+(n-1)×(-2),即:=-2n+12,∴=-2×20+12=-28.評(píng)述:要注意解題步驟的規(guī)范性與準(zhǔn)確性.(3)100是不是等差數(shù)列2,9,16,……的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,說明理由.分析:要想判斷一數(shù)是否為某一數(shù)列的其中一項(xiàng),則關(guān)鍵是要看是否存在一正整數(shù)n值,使得等于這一數(shù).解:根據(jù)題意可得:=2,d=9-2=7.∴此數(shù)列通項(xiàng)公式為:=2+(n-1)×7=7n-5.令7n-5=100,解得:n=15,∴100是這個(gè)數(shù)列的第15項(xiàng).(4)-20是不是等差數(shù)列0,-3,-7,……的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,說明理由.解:由題意可知:=0,d=-3∴此數(shù)列的通項(xiàng)公式為:=-n+,令-n+=-20,解得n=因?yàn)椋璶+=-20沒有正整數(shù)解,所以-20不是這個(gè)數(shù)列的項(xiàng).3.有幾種方法可以計(jì)算公差d

①d=-②d=③d= 問題:如果在與中間插入一個(gè)數(shù)A,使,A,成等差數(shù)列數(shù)列,那么A應(yīng)滿足什么條件?由定義得A-=-A,即:反之,若,則A-=-A由此可可得:成等差數(shù)列[補(bǔ)充例題]例在等差數(shù)列{}中,若+=9,=7,求,.分析:要求一個(gè)數(shù)列的某項(xiàng),通常情況下是先求其通項(xiàng)公式,而要求通項(xiàng)公式,必須知道這個(gè)數(shù)列中的至少一項(xiàng)和公差,或者知道這個(gè)數(shù)列的任意兩項(xiàng)(知道任意兩項(xiàng)就知道公差),本題中,只已知一項(xiàng),和另一個(gè)雙項(xiàng)關(guān)系式,想到從這雙項(xiàng)關(guān)系式入手……解:∵{an}是等差數(shù)列 ∴+=+=9=9-=9-7=2 ∴d=-=7-2=5 ∴=+(9-4)d=7+5*5=32 ∴

=2,=32已知數(shù)列{}是等差數(shù)列(1)是否成立?呢?為什么?(2)是否成立?據(jù)此你能得到什么結(jié)論?(3)是否成立??你又能得到什么結(jié)論?結(jié)論:(性質(zhì))在等差數(shù)列中,若m+n=p+q,則,即m+n=p+q(m,n,p,q∈N)但通常①由推不出m+n=p+q,②Ⅲ.課堂練習(xí)1.在等差數(shù)列中,已知,,求首項(xiàng)與公差2.在等差數(shù)列中,若求1.等差數(shù)列的前項(xiàng)和公式1:證明:①②①+②:∵∴由此得:從而我們可以驗(yàn)證高斯十歲時(shí)計(jì)算上述問題的正確性2.等差數(shù)列的前項(xiàng)和公式2:用上述公式要求必須具備三個(gè)條件:但代入公式1即得:此公式要求必須已知三個(gè)條件:(有時(shí)比較有用)由例3得與之間的關(guān)系:由的定義可知,當(dāng)n=1時(shí),=;當(dāng)n≥2時(shí),=-,即=.1.等差數(shù)列的前項(xiàng)和公式1:2.等差數(shù)列的前項(xiàng)和公式2:結(jié)論:一般地,如果一個(gè)數(shù)列的前n項(xiàng)和為,其中p、q、r為常數(shù),且,那么這個(gè)數(shù)列一定是等差數(shù)列嗎?如果是,它的首項(xiàng)與公差分別是多少?由,得當(dāng)時(shí)===2p對(duì)等差數(shù)列的前項(xiàng)和公式2:可化成式子:,當(dāng)d≠0,是一個(gè)常數(shù)項(xiàng)為零的二次式對(duì)等差數(shù)列前項(xiàng)和的最值問題有兩種方法:利用:當(dāng)>0,d<0,前n項(xiàng)和有最大值可由≥0,且≤0,求得n的值當(dāng)<0,d>0,前n項(xiàng)和有最小值可由≤0,且≥0,求得n的值利用:由利用二次函數(shù)配方法求得最值時(shí)n的值Ⅲ.課堂練習(xí)1.一個(gè)等差數(shù)列前4項(xiàng)的和是24,前5項(xiàng)的和與前2項(xiàng)的和的差是27,求這個(gè)等差數(shù)列的通項(xiàng)公式。2.差數(shù)列{}中,=-15,公差d=3,求數(shù)列{}的前n項(xiàng)和的最小值。Ⅳ.課時(shí)小結(jié)1.前n項(xiàng)和為,其中p、q、r為常數(shù),且,一定是等差數(shù)列,該數(shù)列的首項(xiàng)是公差是d=2p通項(xiàng)公式是2.差數(shù)列前項(xiàng)和的最值問題有兩種方法:(1)當(dāng)>0,d<0,前n項(xiàng)和有最大值可由≥0,且≤0,求得n的值。當(dāng)<0,d>0,前n項(xiàng)和有最小值可由≤0,且≥0,求得n的值。(2)由利用二次函數(shù)配方法求得最值時(shí)n的值1.等比數(shù)列:一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的公比;公比通常用字母q表示(q≠0),即:=q(q≠0)1“從第二項(xiàng)起”與“前一項(xiàng)”之比為常數(shù)(q){}成等比數(shù)列=q(,q≠0)2隱含:任一項(xiàng)“≠0”是數(shù)列{}成等比數(shù)列的必要非充分條件.3q=1時(shí),{an}為常數(shù)。2.等比數(shù)列的通項(xiàng)公式1:由等比數(shù)列的定義,有:;;;…3.等比數(shù)列的通項(xiàng)公式2:4.既是等差又是等比數(shù)列的數(shù)列:非零常數(shù)列探究:課本P56頁的探究活動(dòng)——等比數(shù)列與指數(shù)函數(shù)的關(guān)系等比數(shù)列與指數(shù)函數(shù)的關(guān)系:等比數(shù)列{}的通項(xiàng)公式,它的圖象是分布在曲線(q>0)上的一些孤立的點(diǎn)。當(dāng),q>1時(shí),等比數(shù)列{}是遞增數(shù)列;當(dāng),,等比數(shù)列{}是遞增數(shù)列;當(dāng),時(shí),等比數(shù)列{}是遞減數(shù)列;當(dāng),q>1時(shí),等比數(shù)列{}是遞減數(shù)列;當(dāng)時(shí),等比數(shù)列{}是擺動(dòng)數(shù)列;當(dāng)時(shí),等比數(shù)列{}是常數(shù)列。[補(bǔ)充練習(xí)]2.(1)一個(gè)等比數(shù)列的第9項(xiàng)是,公比是-,求它的第1項(xiàng)(答案:=2916)(2)一個(gè)等比數(shù)列的第2項(xiàng)是10,第3項(xiàng)是20,求它的第1項(xiàng)與第4項(xiàng)(答案:==5,=q=40)1.等比中項(xiàng):如果在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,那么稱這個(gè)數(shù)G為a與b的等比中項(xiàng).即G=±(a,b同號(hào))如果在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,則,反之,若G=ab,則,即a,G,b成等比數(shù)列?!郺,G,b成等比數(shù)列G=ab(a·b≠0)例題證明:設(shè)數(shù)列的首項(xiàng)是,公比為;的首項(xiàng)為,公比為,那么數(shù)列的第n項(xiàng)與第n+1項(xiàng)分別為:它是一個(gè)與n無關(guān)的常數(shù),所以是一個(gè)以q1q2為公比的等比數(shù)列拓展探究:對(duì)于例題中的等比數(shù)列{}與{},數(shù)列{}也一定是等比數(shù)列嗎?探究:設(shè)數(shù)列{}與{}的公比分別為,令,則,所以,數(shù)列{}也一定是等比數(shù)列。已知數(shù)列{}是等比數(shù)列,(1)是否成立?成立嗎?為什么?(2)是否成立?你據(jù)此能得到什么結(jié)論?是否成立?你又能得到什么結(jié)論?結(jié)論:2.等比數(shù)列的性質(zhì):若m+n=p+k,則在等比數(shù)列中,m+n=p+q,有什么關(guān)系呢?由定義得:,則等比數(shù)列的前n項(xiàng)和公式:當(dāng)時(shí),①或②當(dāng)q=1時(shí),當(dāng)已知,q,n時(shí)用公式①;當(dāng)已知,q,時(shí),用公式②.公式的推導(dǎo)方法一:一般地,設(shè)等比數(shù)列它的前n項(xiàng)和是由得∴當(dāng)時(shí),①或②當(dāng)q=1時(shí),公式的推導(dǎo)方法二:有等比數(shù)列的定義,根據(jù)等比的性質(zhì),有即(結(jié)論同上)圍繞基本概念,從等比數(shù)列的定義出發(fā),運(yùn)用等比定理,導(dǎo)出了公式.公式的推導(dǎo)方法三:===(結(jié)論同上)Ⅱ.講授新課1、等比數(shù)列前n項(xiàng),前2n項(xiàng),前3n項(xiàng)的和分別是Sn,S2n,S3n,

求證:2、設(shè)a為常數(shù),求數(shù)列a,2a2,3a3,…,nan,…的前n項(xiàng)和;

(1)a=0時(shí),Sn=0

(2)a≠0時(shí),若a=1,則Sn=1+2+3+…+n=

若a≠1,Sn-aSn=a(1+a+…+an-1-nan),Sn=1、數(shù)列[數(shù)列的通項(xiàng)公式][數(shù)列的前n項(xiàng)和]2、等差數(shù)列[等差數(shù)列的概念][定義]如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示。[等差數(shù)列的判定方法]定義法:對(duì)于數(shù)列,若(常數(shù)),則數(shù)列是等差數(shù)列。2.等差中項(xiàng):對(duì)于數(shù)列,若,則數(shù)列是等差數(shù)列。[等差數(shù)列的通項(xiàng)公式]如果等差數(shù)列的首項(xiàng)是,公差是,則等差數(shù)列的通項(xiàng)為。[說明]該公式整理后是關(guān)于n的一次函數(shù)。[等差數(shù)列的前n項(xiàng)和]1.2.[說明]對(duì)于公式2整理后是關(guān)于n的沒有常數(shù)項(xiàng)的二次函數(shù)。[等差中項(xiàng)]如果,,成等差數(shù)列,那么叫做與的等差中項(xiàng)。即:或[說明]:在一個(gè)等差數(shù)列中,從第2項(xiàng)起,每一項(xiàng)(有窮等差數(shù)列的末項(xiàng)除外)都是它的前一項(xiàng)與后一項(xiàng)的等差中項(xiàng);事實(shí)上等差數(shù)列中某一項(xiàng)是與其等距離的前后兩項(xiàng)的等差中項(xiàng)。[等差數(shù)列的性質(zhì)]1.等差數(shù)列任意兩項(xiàng)間的關(guān)系:如果是等差數(shù)列的第項(xiàng),是等差數(shù)列的第項(xiàng),且,公差為,則有對(duì)于等差數(shù)列,若,則。也就是:,如圖所示:3.若數(shù)列是等差數(shù)列,是其前n項(xiàng)的和,,那么,,成等差數(shù)列。如下圖所示:3、等比數(shù)列[等比數(shù)列的概念][定義]如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示()。[等比中項(xiàng)]如果在與之間插入一個(gè)數(shù),使,,成等比數(shù)列,那么叫做與的等比中項(xiàng)。也就是,如果是的等比中項(xiàng),那么,即。[等比數(shù)列的判定方法]定義法:對(duì)于數(shù)列,若,則數(shù)列是等比數(shù)列。2.等比中項(xiàng):對(duì)于數(shù)列,若,則數(shù)列是等比數(shù)列。[等比數(shù)列的通項(xiàng)公式]如果等比數(shù)列的首項(xiàng)是,公比是,則等比數(shù)列的通項(xiàng)為。[等比數(shù)列的前n項(xiàng)和]eq\o\ac(○,1)eq\o\ac(○,2)eq\o\ac(○,3)當(dāng)時(shí),[等比數(shù)列的性質(zhì)]1.等比數(shù)列任意兩項(xiàng)間的關(guān)系:如果是等比數(shù)列的第項(xiàng),是等差數(shù)列的第項(xiàng),且,公比為,則有對(duì)于等比數(shù)列,若,則也就是:。如圖所示:4.若數(shù)列是等比數(shù)列,是其前n項(xiàng)的和,,那么,,成等比數(shù)列。如下圖所示:4、數(shù)列前n項(xiàng)和(1)重要公式:;;

(2)等差數(shù)列中,(3)等比數(shù)列中,(4)裂項(xiàng)求和:;() (第1課時(shí))課題§3.1不等式與不等關(guān)系【教學(xué)目標(biāo)】1.知識(shí)與技能:通過具體情景,感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)的實(shí)際背景,掌握不等式的基本性質(zhì);2.過程與方法:通過解決具體問題,學(xué)會(huì)依據(jù)具體問題的實(shí)際背景分析問題、解決問題的方法;3.情態(tài)與價(jià)值:通過解決具體問題,體會(huì)數(shù)學(xué)在生活中的重要作用,培養(yǎng)嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣?!窘虒W(xué)重點(diǎn)】用不等式(組)表示實(shí)際問題的不等關(guān)系,并用不等式(組)研究含有不等關(guān)系的問題。理解不等式(組)對(duì)于刻畫不等關(guān)系的意義和價(jià)值。【教學(xué)難點(diǎn)】用不等式(組)正確表示出不等關(guān)系?!窘虒W(xué)過程】1.課題導(dǎo)入在現(xiàn)實(shí)世界和日常生活中,既有相等關(guān)系,又存在著大量的不等關(guān)系。如兩點(diǎn)之間線段最短,三角形兩邊之和大于第三邊,等等。人們還經(jīng)常用長(zhǎng)與短、高與矮、輕與重、胖與瘦、大與小、不超過或不少于等來描述某種客觀事物在數(shù)量上存在的不等關(guān)系。在數(shù)學(xué)中,我們用不等式來表示不等關(guān)系。下面我們首先來看如何利用不等式來表示不等關(guān)系。2.講授新課1)用不等式表示不等關(guān)系引例1:限速40km/h的路標(biāo),指示司機(jī)在前方路段行駛時(shí),應(yīng)使汽車的速度v不超過40km/h,寫成不等式就是:引例2:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%,寫成不等式組就是——用不等式組來表示問題1:設(shè)點(diǎn)A與平面的距離為d,B為平面上的任意一點(diǎn),則。問題2:某種雜志原以每本2.5元的價(jià)格銷售,可以售出8萬本。據(jù)市場(chǎng)調(diào)查,若單價(jià)每提高0.1元,銷售量就可能相應(yīng)減少2000本。若把提價(jià)后雜志的定價(jià)設(shè)為x元,怎樣用不等式表示銷售的總收入仍不低于20萬元呢?解:設(shè)雜志社的定價(jià)為x

元,則銷售的總收入為萬元,那么不等關(guān)系“銷售的總收入仍不低于20萬元”可以表示為不等式問題3:某鋼鐵廠要把長(zhǎng)度為4000mm的鋼管截成500mm和600mm兩種。按照生產(chǎn)的要求,600mm的數(shù)量不能超過500mm鋼管的3倍。怎樣寫出滿足所有上述不等關(guān)系的不等式呢?解:假設(shè)截得500mm的鋼管x根,截得600mm的鋼管y根。根據(jù)題意,應(yīng)有如下的不等關(guān)系:(1)截得兩種鋼管的總長(zhǎng)度不超過4000mm;(2)截得600mm鋼管的數(shù)量不能超過500mm鋼管數(shù)量的3倍;(3)截得兩種鋼管的數(shù)量都不能為負(fù)。要同時(shí)滿足上述的三個(gè)不等關(guān)系,可以用下面的不等式組來表示:3.隨堂練習(xí)1、試舉幾個(gè)現(xiàn)實(shí)生活中與不等式有關(guān)的例子。2、課本P74的練習(xí)1、24.課時(shí)小結(jié)用不等式(組)表示實(shí)際問題的不等關(guān)系,并用不等式(組)研究含有不等關(guān)系的問題。5.作業(yè)課本P75習(xí)題3.1[A組]第4、5題(第2課時(shí))課題:§3.1不等式與不等關(guān)系【教學(xué)目標(biāo)】1.知識(shí)與技能:掌握不等式的基本性質(zhì),會(huì)用不等式的性質(zhì)證明簡(jiǎn)單的不等式;2.過程與方法:通過解決具體問題,學(xué)會(huì)依據(jù)具體問題的實(shí)際背景分析問題、解決問題的方法;3.情態(tài)與價(jià)值:通過講練結(jié)合,培養(yǎng)學(xué)生轉(zhuǎn)化的數(shù)學(xué)思想和邏輯推理能力.【教學(xué)重點(diǎn)】掌握不等式的性質(zhì)和利用不等式的性質(zhì)證明簡(jiǎn)單的不等式;【教學(xué)難點(diǎn)】利用不等式的性質(zhì)證明簡(jiǎn)單的不等式。【教學(xué)過程】1.課題導(dǎo)入在初中,我們已經(jīng)學(xué)習(xí)過不等式的一些基本性質(zhì)。請(qǐng)同學(xué)們回憶初中不等式的的基本性質(zhì)。(1)不等式的兩邊同時(shí)加上或減去同一個(gè)數(shù),不等號(hào)的方向不改變;即若(2)不等式的兩邊同時(shí)乘以或除以同一個(gè)正數(shù),不等號(hào)的方向不改變;即若(3)不等式的兩邊同時(shí)乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。即若2.講授新課1、不等式的基本性質(zhì):師:同學(xué)們能證明以上的不等式的基本性質(zhì)嗎?證明:1)∵(a+c)-(b+c)=a-b>0,∴a+c>b+c2),∴.實(shí)際上,我們還有,(證明:∵a>b,b>c,∴a-b>0,b-c>0.根據(jù)兩個(gè)正數(shù)的和仍是正數(shù),得(a-b)+(b-c)>0,即a-c>0,∴a>c.于是,我們就得到了不等式的基本性質(zhì):(1)(2)(3)(4)2、探索研究思考,利用上述不等式的性質(zhì),證明不等式的下列性質(zhì):(1);(2);(3)。證明:1)∵a>b,∴a+c>b+c.①∵c>d,∴b+c>b+d.②由①、②得a+c>b+d.2)3)反證法)假設(shè),則:若這都與矛盾,∴.[范例講解]:例1、已知求證。證明:以為,所以ab>0,。于是,即由c<0,得3.隨堂練習(xí)11、課本P74的練習(xí)32、在以下各題的橫線處適當(dāng)?shù)牟坏忍?hào):(1)(+)26+2;(2)(-)2(-1)2;(3);(4)當(dāng)a>b>0時(shí),logalogb答案:(1)<(2)<(3)<(4)<[補(bǔ)充例題]例2、比較(a+3)(a-5)與(a+2)(a-4)的大小。分析:此題屬于兩代數(shù)式比較大小,實(shí)際上是比較它們的值的大小,可以作差,然后展開,合并同類項(xiàng)之后,判斷差值正負(fù)(注意是指差的符號(hào),至于差的值究竟是多少,在這里無關(guān)緊要)。根據(jù)實(shí)數(shù)運(yùn)算的符號(hào)法則來得出兩個(gè)代數(shù)式的大小。比較兩個(gè)實(shí)數(shù)大小的問題轉(zhuǎn)化為實(shí)數(shù)運(yùn)算符號(hào)問題。解:由題意可知:(a+3)(a-5)-(a+2)(a-4)=(a2-2a-15)-(a2-2a-8)=-7<0∴(a+3)(a-5)<(a+2)(a-4)隨堂練習(xí)2比較大小:(1)(x+5)(x+7)與(x+6)2(2)4.課時(shí)小結(jié)本節(jié)課學(xué)習(xí)了不等式的性質(zhì),并用不等式的性質(zhì)證明了一些簡(jiǎn)單的不等式,還研究了如何比較兩個(gè)實(shí)數(shù)(代數(shù)式)的大小——作差法,其具體解題步驟可歸納為:第一步:作差并化簡(jiǎn),其目標(biāo)應(yīng)是n個(gè)因式之積或完全平方式或常數(shù)的形式;第二步:判斷差值與零的大小關(guān)系,必要時(shí)須進(jìn)行討論;第三步:得出結(jié)論5.作業(yè)課本P75習(xí)題3.1[A組]第2、3題;[B組]第1題(第3課時(shí))課題:§3.2一元二次不等式及其解法【教學(xué)目標(biāo)】1.知識(shí)與技能:理解一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系,掌握?qǐng)D象法解一元二次不等式的方法;培養(yǎng)數(shù)形結(jié)合的能力,培養(yǎng)分類討論的思想方法,培養(yǎng)抽象概括能力和邏輯思維能力;2.過程與方法:經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過程和通過函數(shù)圖象探究一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系,獲得一元二次不等式的解法;3.情態(tài)與價(jià)值:激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情,培養(yǎng)勇于探索的精神,勇于創(chuàng)新精神,同時(shí)體會(huì)事物之間普遍聯(lián)系的辯證思想?!窘虒W(xué)重點(diǎn)】從實(shí)際情境中抽象出一元二次不等式模型;一元二次不等式的解法?!窘虒W(xué)難點(diǎn)】理解二次函數(shù)、一元二次方程與一元二次不等式解集的關(guān)系?!窘虒W(xué)過程】1.課題導(dǎo)入從實(shí)際情境中抽象出一元二次不等式模型:教材P76互聯(lián)網(wǎng)的收費(fèi)問題教師引導(dǎo)學(xué)生分析問題、解決問題,最后得到一元二次不等式模型:…………(1)2.講授新課1)一元二次不等式的定義象這樣,只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式,稱為一元二次不等式2)探究一元二次不等式的解集怎樣求不等式(1)的解集呢?探究:(1)二次方程的根與二次函數(shù)的零點(diǎn)的關(guān)系容易知道:二次方程的有兩個(gè)實(shí)數(shù)根:二次函數(shù)有兩個(gè)零點(diǎn):于是,我們得到:二次方程的根就是二次函數(shù)的零點(diǎn)。(2)觀察圖象,獲得解集畫出二次函數(shù)的圖象,如圖,觀察函數(shù)圖象,可知:當(dāng)x<0,或x>5時(shí),函數(shù)圖象位于x軸上方,此時(shí),y>0,即;當(dāng)0<x<5時(shí),函數(shù)圖象位于x軸下方,此時(shí),y<0,即;所以,不等式的解集是,從而解決了本節(jié)開始時(shí)提出的問題。3)探究一般的一元二次不等式的解法任意的一元二次不等式,總可以化為以下兩種形式:

一般地,怎樣確定一元二次不等式>0與<0的解集呢?組織討論:從上面的例子出發(fā),綜合學(xué)生的意見,可以歸納出確定一元二次不等式的解集,關(guān)鍵要考慮以下兩點(diǎn):(1)拋物線與x軸的相關(guān)位置的情況,也就是一元二次方程=0的根的情況(2)拋物線的開口方向,也就是a的符號(hào)總結(jié)討論結(jié)果:(l)拋物線

(a>0)與x軸的相關(guān)位置,分為三種情況,這可以由一元二次方程=0的判別式三種取值情況(Δ>0,Δ=0,Δ<0)來確定.因此,要分二種情況討論(2)a<0可以轉(zhuǎn)化為a>0分Δ>O,Δ=0,Δ<0三種情況,得到一元二次不等式>0與<0的解集一元二次不等式的解集:設(shè)相應(yīng)的一元二次方程的兩根為,,則不等式的解的各種情況如下表:(讓學(xué)生獨(dú)立完成課本第77頁的表格)二次函數(shù)()的圖象一元二次方程有兩相異實(shí)根有兩相等實(shí)根無實(shí)根R[范例講解]例2(課本第78頁)求不等式的解集.解:因?yàn)?所以,原不等式的解集是例3(課本第78頁)解不等式.解:整理,得.因?yàn)闊o實(shí)數(shù)解,所以不等式的解集是.從而,原不等式的解集是.3.隨堂練習(xí)課本第80的練習(xí)1(1)、(3)、(5)、(7)4.課時(shí)小結(jié)解一元二次不等式的步驟:①將二次項(xiàng)系數(shù)化為“+”:A=>0(或<0)(a>0)②計(jì)算判別式,分析不等式的解的情況:ⅰ.>0時(shí),求根<,ⅱ.=0時(shí),求根==,ⅲ.<0時(shí),方程無解,③寫出解集.5.評(píng)價(jià)設(shè)計(jì)課本第80頁習(xí)題3.2[A]組第1題(第4課時(shí))課題:§3.2一元二次不等式及其解法【教學(xué)目標(biāo)】1.知識(shí)與技能:鞏固一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系;進(jìn)一步熟練解一元二次不等式的解法;2.過程與方法:培養(yǎng)數(shù)形結(jié)合的能力,一題多解的能力,培養(yǎng)抽象概括能力和邏輯思維能力;3.情態(tài)與價(jià)值:激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情,培養(yǎng)勇于探索的精神,勇于創(chuàng)新精神,同時(shí)體會(huì)從不同側(cè)面觀察同一事物思想【教學(xué)重點(diǎn)】熟練掌握一元二次不等式的解法【教學(xué)難點(diǎn)】理解一元二次不等式與一元二次方程、二次函數(shù)的關(guān)系【教學(xué)過程】1.課題導(dǎo)入1.一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系2.一元二次不等式的解法步驟——課本第86頁的表格2.講授新課[范例講解]例1某種牌號(hào)的汽車在水泥路面上的剎車距離sm和汽車的速度xkm/h有如下的關(guān)系:在一次交通事故中,測(cè)得這種車的剎車距離大于39.5m,那么這輛汽車剎車前的速度是多少?(精確到0.01km/h)解:設(shè)這輛汽車剎車前的速度至少為xkm/h,根據(jù)題意,我們得到移項(xiàng)整理得:顯然,方程有兩個(gè)實(shí)數(shù)根,即。所以不等式的解集為在這個(gè)實(shí)際問題中,x>0,所以這輛汽車剎車前的車速至少為79.94km/h.例4、一個(gè)汽車制造廠引進(jìn)了一條摩托車整車裝配流水線,這條流水線生產(chǎn)的摩托車數(shù)量x(輛)與創(chuàng)造的價(jià)值y(元)之間有如下的關(guān)系:若這家工廠希望在一個(gè)星期內(nèi)利用這條流水線創(chuàng)收6000元以上,那么它在一個(gè)星期內(nèi)大約應(yīng)該生產(chǎn)多少輛摩托車?解:設(shè)在一個(gè)星期內(nèi)大約應(yīng)該生產(chǎn)x輛摩托車,根據(jù)題意,我們得到移項(xiàng)整理,得因?yàn)?,所以方程有兩個(gè)實(shí)數(shù)根由二次函數(shù)的圖象,得不等式的解為:50<x<60因?yàn)閤只能取正整數(shù),所以,當(dāng)這條摩托車整車裝配流水線在一周內(nèi)生產(chǎn)的摩托車數(shù)量在51—59輛之間時(shí),這家工廠能夠獲得6000元以上的收益。3.隨堂練習(xí)1課本第80頁練習(xí)2[補(bǔ)充例題]應(yīng)用一(一元二次不等式與一元二次方程的關(guān)系)例:設(shè)不等式的解集為,求?應(yīng)用二(一元二次不等式與二次函數(shù)的關(guān)系)例:設(shè),且,求的取值范圍.改:設(shè)對(duì)于一切都成立,求的范圍.改:若方程有兩個(gè)實(shí)根,且,,求的范圍.隨堂練習(xí)21、已知二次不等式的解集為,求關(guān)于的不等式的解集.2、若關(guān)于的不等式的解集為空集,求的取值范圍.改1:解集非空改2:解集為一切實(shí)數(shù)4.課時(shí)小結(jié)進(jìn)一步熟練掌握一元二次不等式的解法一元二次不等式與一元二次方程以及一元二次函數(shù)的關(guān)系5.作業(yè)課本第80頁的習(xí)題3.2[A]組第3、5題(第5課時(shí))課題:§3.3.1二元一次不等式(組)與平面區(qū)域【教學(xué)目標(biāo)】1.知識(shí)與技能:了解二元一次不等式的幾何意義,會(huì)用二元一次不等式組表示平面區(qū)域;2.過程與方法:經(jīng)歷從實(shí)際情境中抽象出二元一次不等式組的過程,提高數(shù)學(xué)建模的能力;3.情態(tài)與價(jià)值:通過本節(jié)課的學(xué)習(xí),體會(huì)數(shù)學(xué)來源與生活,提高數(shù)學(xué)學(xué)習(xí)興趣?!窘虒W(xué)重點(diǎn)】用二元一次不等式(組)表示平面區(qū)域;【教學(xué)難點(diǎn)】【教學(xué)過程】1.課題導(dǎo)入1.從實(shí)際問題中抽象出二元一次不等式(組)的數(shù)學(xué)模型課本第82頁的“銀行信貸資金分配問題”教師引導(dǎo)學(xué)生思考、探究,讓學(xué)生經(jīng)歷建立線性規(guī)劃模型的過程。在獲得探究體驗(yàn)的基礎(chǔ)上,通過交流形成共識(shí):2.講授新課1.建立二元一次不等式模型把實(shí)際問題數(shù)學(xué)問題:設(shè)用于企業(yè)貸款的資金為x元,用于個(gè)人貸款的資金為y元。(把文字語言符號(hào)語言)(資金總數(shù)為25000000元)(1)(預(yù)計(jì)企業(yè)貸款創(chuàng)收12%,個(gè)人貸款創(chuàng)收10%,共創(chuàng)收30000元以上)即(2)(用于企業(yè)和個(gè)人貸款的資金數(shù)額都不能是負(fù)值)(3)將(1)(2)(3)合在一起,得到分配資金應(yīng)滿足的條件:2.二元一次不等式和二元一次不等式組的定義(1)二元一次不等式:含有兩個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1的不等式叫做二元一次不等式。(2)二元一次不等式組:有幾個(gè)二元一次不等式組成的不等式組稱為二元一次不等式組。(3)二元一次不等式(組)的解集:滿足二元一次不等式(組)的x和y的取值構(gòu)成有序?qū)崝?shù)對(duì)(x,y),所有這樣的有序?qū)崝?shù)對(duì)(x,y)構(gòu)成的集合稱為二元一次不等式(組)的解集。(4)二元一次不等式(組)的解集與平面直角坐標(biāo)系內(nèi)的點(diǎn)之間的關(guān)系:二元一次不等式(組)的解集是有序?qū)崝?shù)對(duì),而點(diǎn)的坐標(biāo)也是有序?qū)崝?shù)對(duì),因此,有序?qū)崝?shù)對(duì)就可以看成是平面內(nèi)點(diǎn)的坐標(biāo),進(jìn)而,二元一次不等式(組)的解集就可以看成是直角坐標(biāo)系內(nèi)的點(diǎn)構(gòu)成的集合。3.探究二元一次不等式(組)的解集表示的圖形(1)回憶、思考回憶:初中一元一次不等式(組)的解集所表示的圖形——數(shù)軸上的區(qū)間思考:在直角坐標(biāo)系內(nèi),二元一次不等式(組)的解集表示什么圖形?(2)探究從特殊到一般:先研究具體的二元一次不等式x-y<6的解集所表示的圖形。如圖:在平面直角坐標(biāo)系內(nèi),x-y=6表示一條直線。平面內(nèi)所有的點(diǎn)被直線分成三類:第一類:在直線x-y=6上的點(diǎn);第二類:在直線x-y=6左上方的區(qū)域內(nèi)的點(diǎn);第三類:在直線x-y=6右下方的區(qū)域內(nèi)的點(diǎn)。設(shè)點(diǎn)是直線x-y=6上的點(diǎn),選取點(diǎn),使它的坐標(biāo)滿足不等式x-y<6,請(qǐng)同學(xué)們完成課本第83頁的表格,橫坐標(biāo)x-3-2-10123點(diǎn)P的縱坐標(biāo)點(diǎn)A的縱坐標(biāo)并思考:當(dāng)點(diǎn)A與點(diǎn)P有相同的橫坐標(biāo)時(shí),它們的縱坐標(biāo)有什么關(guān)系?根據(jù)此說說,直線x-y=6左上方的坐標(biāo)與不等式x-y<6有什么關(guān)系?直線x-y=6右下方點(diǎn)的坐標(biāo)呢?學(xué)生思考、討論、交流,達(dá)成共識(shí):在平面直角坐標(biāo)系中,以二元一次不等式x-y<6的解為坐標(biāo)的點(diǎn)都在直線x-y=6的左上方;反過來,直線x-y=6左上方的點(diǎn)的坐標(biāo)都滿足不等式x-y<6。因此,在平面直角坐標(biāo)系中,不等式x-y<6表示直線x-y=6左上方的平面區(qū)域;如圖。類似的:二元一次不等式x-y>6表示直線x-y=6右下方的區(qū)域;如圖。直線叫做這兩個(gè)區(qū)域的邊界由特殊例子推廣到一般情況:(3)結(jié)論:二元一次不等式Ax+By+C>0在平面直角坐標(biāo)系中表示直線Ax+By+C=0某一側(cè)所有點(diǎn)組成的平面區(qū)域.(虛線表示區(qū)域不包括邊界直線)4.二元一次不等式表示哪個(gè)平面區(qū)域的判斷方法由于對(duì)在直線Ax+By+C=0同一側(cè)的所有點(diǎn)(),把它的坐標(biāo)()代入Ax+By+C,所得到實(shí)數(shù)的符號(hào)都相同,所以只需在此直線的某一側(cè)取一特殊點(diǎn)(x0,y0),從Ax0+By0+C的正負(fù)即可判斷Ax+By+C>0表示直線哪一側(cè)的平面區(qū)域.(特殊地,當(dāng)C≠0時(shí),常把原點(diǎn)作為此特殊點(diǎn))【應(yīng)用舉例】例1畫出不等式表示的平面區(qū)域。解:先畫直線(畫成虛線).取原點(diǎn)(0,0),代入+4y-4,∵0+4×0-4=-4<0,∴原點(diǎn)在表示的平面區(qū)域內(nèi),不等式表示的區(qū)域如圖:歸納:畫二元一次不等式表示的平面區(qū)域常采用“直線定界,特殊點(diǎn)定域”的方法。特殊地,當(dāng)時(shí),常把原點(diǎn)作為此特殊點(diǎn)。變式1、畫出不等式所表示的平面區(qū)域。變式2、畫出不等式所表示的平面區(qū)域。例2用平面區(qū)域表示.不等式組的解集。分析:不等式組表示的平面區(qū)域是各個(gè)不等式所表示的平面點(diǎn)集的交集,因而是各個(gè)不等式所表示的平面區(qū)域的公共部分。解:不等式表示直線右下方的區(qū)域,表示直線右上方的區(qū)域,取兩區(qū)域重疊的部分,如圖的陰影部分就表示原不等式組的解集。歸納:不等式組表示的平面區(qū)域是各個(gè)不等式所表示的平面點(diǎn)集的交集,因而是各個(gè)不等式所表示的平面區(qū)域的公共部分。變式1、畫出不等式表示的平面區(qū)域。變式2、由直線,和圍成的三角形區(qū)域(包括邊界)用不等式可表示為。3.隨堂練習(xí)1、課本第86頁的練習(xí)1、2、34.課時(shí)小結(jié)1.二元一次不等式表示的平面區(qū)域.2.二元一次不等式表示哪個(gè)平面區(qū)域的判斷方法.3.二元一次不等式組表示的平面區(qū)域.5.作業(yè)課本第93頁習(xí)題3.3[A]組的第1題(第6課時(shí))課題:§3.3.1二元一次不等式(組)與平面區(qū)域【教學(xué)目標(biāo)】1.知識(shí)與技能:鞏固二元一次不等式和二元一次不等式組所表示的平面區(qū)域;能根據(jù)實(shí)際問題中的已知條件,找出約束條件;2.過程與方法:經(jīng)歷把實(shí)際問題抽象為數(shù)學(xué)問題的過程,體會(huì)集合、化歸、數(shù)形結(jié)合的數(shù)學(xué)思想;3.情態(tài)與價(jià)值:結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和“用數(shù)學(xué)”的意識(shí),激勵(lì)學(xué)生創(chuàng)新。【教學(xué)重點(diǎn)】理解二元一次不等式表示平面區(qū)域并能把不等式(組)所表示的平面區(qū)域畫出來;【教學(xué)難點(diǎn)】把實(shí)際問題抽象化,用二元一次不等式(組)表示平面區(qū)域。【教學(xué)過程】1.課題導(dǎo)入[復(fù)習(xí)引入]二元一次不等式Ax+By+C>0在平面直角坐標(biāo)系中表示直線Ax+By+C=0某一側(cè)所有點(diǎn)組成的平面區(qū)域.(虛線表示區(qū)域不包括邊界直線)判斷方法:由于對(duì)在直線Ax+By+C=0同一側(cè)的所有點(diǎn)(x,y),把它的坐標(biāo)(x,y)代入Ax+By+C,所得到實(shí)數(shù)的符號(hào)都相同,所以只需在此直線的某一側(cè)取一特殊點(diǎn)(x0,y0),從Ax0+By0+C的正負(fù)即可判斷Ax+By+C>0表示直線哪一側(cè)的平面區(qū)域.(特殊地,當(dāng)C≠0時(shí),常把原點(diǎn)作為此特殊點(diǎn))。隨堂練習(xí)11、畫出不等式2+y-6<0表示的平面區(qū)域.2、畫出不等式組表示的平面區(qū)域。2.講授新課【應(yīng)用舉例】例3某人準(zhǔn)備投資1200萬興辦一所完全中學(xué),對(duì)教育市場(chǎng)進(jìn)行調(diào)查后,他得到了下面的數(shù)據(jù)表格(以班級(jí)為單位):學(xué)段班級(jí)學(xué)生人數(shù)配備教師數(shù)硬件建設(shè)/萬元教師年薪/萬元初中45226/班2/人高中40354/班2/人分別用數(shù)學(xué)關(guān)系式和圖形表示上述的限制條件。解:設(shè)開設(shè)初中班x個(gè),開設(shè)高中班y個(gè),根據(jù)題意,總共招生班數(shù)應(yīng)限制在20-30之間,所以有考慮到所投資金的限制,得到即另外,開設(shè)的班數(shù)不能為負(fù),則把上面的四個(gè)不等式合在一起,得到:用圖形表示這個(gè)限制條件,得到如圖的平面區(qū)域(陰影部分)例4一個(gè)化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽18t;生產(chǎn)1車皮乙種肥料需要的主要原料是磷酸鹽1t,硝酸鹽15t,現(xiàn)庫存磷酸鹽10t、硝酸鹽66t,在此基礎(chǔ)上生產(chǎn)兩種混合肥料。列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域。解:設(shè)x,y分別為計(jì)劃生產(chǎn)甲乙兩種混合肥料的車皮數(shù),于是滿足以下條件:在直角坐標(biāo)系中可表示成如圖的平面區(qū)域(陰影部分)。[補(bǔ)充例題]例1、畫出下列不等式表示的區(qū)域(1);(2)分析:(1)轉(zhuǎn)化為等價(jià)的不等式組;(2)注意到不等式的傳遞性,由,得,又用代,不等式仍成立,區(qū)域關(guān)于軸對(duì)稱。解:(1)或矛盾無解,故點(diǎn)在一帶形區(qū)域內(nèi)(含邊界)。(2)由,得;當(dāng)時(shí),有點(diǎn)在一條形區(qū)域內(nèi)(邊界);當(dāng),由對(duì)稱性得出。指出:把非規(guī)范形式等價(jià)轉(zhuǎn)化為規(guī)范不等式組形式便于求解例2、利用區(qū)域求不等式組的整數(shù)解分析:不等式組的實(shí)數(shù)解集為三條直線,,所圍成的三角形區(qū)域內(nèi)部(不含邊界)。設(shè),,,求得區(qū)域內(nèi)點(diǎn)橫坐標(biāo)范圍,取出的所有整數(shù)值,再代回原不等式組轉(zhuǎn)化為的一元不等式組得出相應(yīng)的的整數(shù)值。解:設(shè),,,,,,∴,,。于是看出區(qū)域內(nèi)點(diǎn)的橫坐標(biāo)在內(nèi),?。?,2,3,當(dāng)=1時(shí),代入原不等式組有?,得=-2,∴區(qū)域內(nèi)有整點(diǎn)(1,-2)。同理可求得另外三個(gè)整點(diǎn)(2,0),(2,-1),(3,-1)。指出:求不等式的整數(shù)解即求區(qū)域內(nèi)的整點(diǎn)是教學(xué)中的難點(diǎn),它為線性規(guī)劃中求最優(yōu)整數(shù)解作鋪墊。常有兩種處理方法,一種是通過打出網(wǎng)絡(luò)求整點(diǎn);另一種是本題解答中所采用的,先確定區(qū)域內(nèi)點(diǎn)的橫坐標(biāo)的范圍,確定的所有整數(shù)值,再代回原不等式組,得出的一元一次不等式組,再確定的所有整數(shù)值,即先固定,再用制約。3.隨堂練習(xí)21.(1);(2).;(3).2.畫出不等式組表示的平面區(qū)域3.課本第86頁的練習(xí)44.課時(shí)小結(jié)進(jìn)一步熟悉用不等式(組)的解集表示的平面區(qū)域。5.作業(yè)1、課本第93頁習(xí)題3.3[B]組的第1、2題(第7課時(shí))課題:§3.3.2簡(jiǎn)單的線性規(guī)劃【教學(xué)目標(biāo)】1.知識(shí)與技能:使學(xué)生了解二元一次不等式表示平面區(qū)域;了解線性規(guī)劃的意義以及約束條件、目標(biāo)函數(shù)、可行解、可行域、最優(yōu)解等基本概念;了解線性規(guī)劃問題的圖解法,并能應(yīng)用它解決一些簡(jiǎn)單的實(shí)際問題;2.過程與方法:經(jīng)歷從實(shí)際情境中抽象出簡(jiǎn)單的線性規(guī)劃問題的過程,提高數(shù)學(xué)建模能力;3.情態(tài)與價(jià)值:培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生“建模”和解決實(shí)際問題的能力。【教學(xué)重點(diǎn)】用圖解法解決簡(jiǎn)單的線性規(guī)劃問題【教學(xué)難點(diǎn)】準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解【教學(xué)過程】1.課題導(dǎo)入[復(fù)習(xí)提問]1、二元一次不等式在平面直角坐標(biāo)系中表示什么圖形?2、怎樣畫二元一次不等式(組)所表示的平面區(qū)域?應(yīng)注意哪些事項(xiàng)?3、熟記“直線定界、特殊點(diǎn)定域”方法的內(nèi)涵。2.講授新課在現(xiàn)實(shí)生產(chǎn)、生活中,經(jīng)常會(huì)遇到資源利用、人力調(diào)配、生產(chǎn)安排等問題。1、下面我們就來看有關(guān)與生產(chǎn)安排的一個(gè)問題:引例:某工廠有A、B兩種配件生產(chǎn)甲、乙兩種產(chǎn)品,每生產(chǎn)一件甲產(chǎn)品使用4個(gè)A配件耗時(shí)1h,每生產(chǎn)一件乙產(chǎn)品使用4個(gè)B配件耗時(shí)2h,該廠每天最多可從配件廠獲得16個(gè)A配件和12個(gè)B配件,按每天8h計(jì)算,該廠所有可能的日生產(chǎn)安排是什么?(1)用不等式組表示問題中的限制條件:設(shè)甲、乙兩種產(chǎn)品分別生產(chǎn)x、y件,又已知條件可得二元一次不等式組:……………….(1)(2)畫出不等式組所表示的平面區(qū)域:如圖,圖中的陰影部分的整點(diǎn)(坐標(biāo)為整數(shù)的點(diǎn))就代表所有可能的日生產(chǎn)安排。(3)提出新問題:進(jìn)一步,若生產(chǎn)一件甲產(chǎn)品獲利2萬元,生產(chǎn)一件乙產(chǎn)品獲利3萬元,采用哪種生產(chǎn)安排利潤(rùn)最大?(4)嘗試解答:設(shè)生產(chǎn)甲產(chǎn)品x件,乙產(chǎn)品y件時(shí),工廠獲得的利潤(rùn)為z,則z=2x+3y.這樣,上述問題就轉(zhuǎn)化為:當(dāng)x,y滿足不等式(1)并且為非負(fù)整數(shù)時(shí),z的最大值是多少?把z=2x+3y變形為,這是斜率為,在y軸上的截距為的直線。當(dāng)z變化時(shí),可以得到一族互相平行的直線,如圖,由于這些直線的斜率是確定的,因此只要給定一個(gè)點(diǎn),(例如(1,2)),就能確定一條直線(),這說明,截距可以由平面內(nèi)的一個(gè)點(diǎn)的坐標(biāo)唯一確定??梢钥吹?,直線與不等式組(1)的區(qū)域的交點(diǎn)滿足不等式組(1),而且當(dāng)截距最大時(shí),z取得最大值。因此,問題可以轉(zhuǎn)化為當(dāng)直線與不等式組(1)確定的平面區(qū)域有公共點(diǎn)時(shí),在區(qū)域內(nèi)找一個(gè)點(diǎn)P,使直線經(jīng)過點(diǎn)P時(shí)截距最大。(5)獲得結(jié)果:由上圖可以看出,當(dāng)實(shí)現(xiàn)金國(guó)直線x=4與直線x+2y-8=0的交點(diǎn)M(4,2)時(shí),截距的值最大,最大值為,這時(shí)2x+3y=14.所以,每天生產(chǎn)甲產(chǎn)品4件,乙產(chǎn)品2件時(shí),工廠可獲得最大利潤(rùn)14萬元。2、線性規(guī)劃的有關(guān)概念:①線性約束條件:在上述問題中,不等式組是一組變量x、y的約束條件,這組約束條件都是關(guān)于x、y的一次不等式,故又稱線性約束條件.②線性目標(biāo)函數(shù):關(guān)于x、y的一次式z=2x+y是欲達(dá)到最大值或最小值所涉及的變量x、y的解析式,叫線性目標(biāo)函數(shù).③線性規(guī)劃問題:一般地,求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值的問題,統(tǒng)稱為線性規(guī)劃問題.④可行解、可行域和最優(yōu)解:滿足線性約束條件的解(x,y)叫可行解.由所有可行解組成的集合叫做可行域.使目標(biāo)函數(shù)取得最大或最小值的可行解叫線性規(guī)劃問題的最優(yōu)解.變換條件,加深理解探究:課本第88頁的探究活動(dòng)在上述問題中,如果生產(chǎn)一件甲產(chǎn)品獲利3萬元,每生產(chǎn)一件乙產(chǎn)品獲利2萬元,有應(yīng)當(dāng)如何安排生產(chǎn)才能獲得最大利潤(rùn)?在換幾組數(shù)據(jù)試試。有上述過程,你能得出最優(yōu)解與可行域之間的關(guān)系嗎?3.隨堂練習(xí)1.請(qǐng)同學(xué)們結(jié)合課本P91練習(xí)1來掌握?qǐng)D解法解決簡(jiǎn)單的線性規(guī)劃問題.(1)求z=2x+y的最大值,使式中的x、y滿足約束條件解:不等式組表示的平面區(qū)域如圖所示:當(dāng)x=0,y=0時(shí),z=2x+y=0點(diǎn)(0,0)在直線:2x+y=0上.作一組與直線平行的直線:2x+y=t,t∈R.可知,在經(jīng)過不等式組所表示的公共區(qū)域內(nèi)的點(diǎn)且平行于的直線中,以經(jīng)過點(diǎn)A(2,-1)的直線所對(duì)應(yīng)的t最大.所以zmax=2×2-1=3.(2)求z=3x+5y的最大值和最小值,使式中的x、y滿足約束條件解:不等式組所表示的平面區(qū)域如圖所示:從圖示可知,直線3x+5y=t在經(jīng)過不等式組所表示的公共區(qū)域內(nèi)的點(diǎn)時(shí),以經(jīng)過點(diǎn)(-2,-1)的直線所對(duì)應(yīng)的t最小,以經(jīng)過點(diǎn)()的直線所對(duì)應(yīng)的t最大.所以zmin=3×(-2)+5×(-1)=-11.zmax=3×+5×=144.課時(shí)小結(jié)用圖解法解決簡(jiǎn)單的線性規(guī)劃問題的基本步驟:(1)尋找線性約束條件,線性目標(biāo)函數(shù);(2)由二元一次不等式表示的平面區(qū)域做出可行域;(3)在可行域內(nèi)求目標(biāo)函數(shù)的最優(yōu)解5.作業(yè)課本第93頁習(xí)題[A]組的第2題.(第8課時(shí))課題:§3.3.2簡(jiǎn)單的線性規(guī)劃【教學(xué)目標(biāo)】1.知識(shí)與技能:掌握線性規(guī)劃問題的圖解法,并能應(yīng)用它解決一些簡(jiǎn)單的實(shí)際問題;2.過程與方法:經(jīng)歷從實(shí)際情境中抽象出簡(jiǎn)單的線性規(guī)劃問題的過程,提高數(shù)學(xué)建模能力;3.情態(tài)與價(jià)值:引發(fā)學(xué)生學(xué)習(xí)和使用數(shù)學(xué)知識(shí)的興趣,發(fā)展創(chuàng)新精神,培養(yǎng)實(shí)事求是、理論與實(shí)際相結(jié)合的科學(xué)態(tài)度和科學(xué)道德?!窘虒W(xué)重點(diǎn)】利用圖解法求得線性規(guī)劃問題的最優(yōu)解;【教學(xué)難點(diǎn)】把實(shí)際問題轉(zhuǎn)化成線性規(guī)劃問題,并給出解答,解決難點(diǎn)的關(guān)鍵是根據(jù)實(shí)際問題中的已知條件,找出約束條件和目標(biāo)函數(shù),利用圖解法求得最優(yōu)解?!窘虒W(xué)過程】1.課題導(dǎo)入[復(fù)習(xí)引入]:1、二元一次不等式Ax+By+C>0在平面直角坐標(biāo)系中表示直線Ax+By+C=0某一側(cè)所有點(diǎn)組成的平面區(qū)域(虛線表示區(qū)域不包括邊界直線)2、目標(biāo)函數(shù),線性目標(biāo)函數(shù),線性規(guī)劃問題,可行解,可行域,最優(yōu)解:2.講授新課線性規(guī)劃在實(shí)際中的應(yīng)用:線性規(guī)劃的理論和方法主要在兩類問題中得到應(yīng)用,一是在人力、物力、資金等資源一定的條件下,如何使用它們來完成最多的任務(wù);二是給定一項(xiàng)任務(wù),如何合理安排和規(guī)劃,能以最少的人力、物力、資金等資源來完成該項(xiàng)任務(wù)下面我們就來看看線性規(guī)劃在實(shí)際中的一些應(yīng)用:[范例講解]營(yíng)養(yǎng)學(xué)家指出,成人良好的日常飲食應(yīng)該至少提供0.075kg的碳水化合物,0.06kg的蛋白質(zhì),0.06kg的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋白質(zhì),0.14kg脂肪,花費(fèi)28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白質(zhì),0.07kg脂肪,花費(fèi)21元。為了滿足營(yíng)養(yǎng)專家指出的日常飲食要求,同時(shí)使花費(fèi)最低,需要同時(shí)食用食物A和食物B多少kg?指出:要完成一項(xiàng)確定的任務(wù),如何統(tǒng)籌安排,盡量做到用最少的資源去完成它,這是線性規(guī)劃中最常見的問題之一.在上一節(jié)例3中,若根據(jù)有關(guān)部門的規(guī)定,初中每人每年可收取學(xué)費(fèi)1600元,高中每人每年可收取學(xué)費(fèi)2700元。那么開設(shè)初中班和高中班各多少個(gè),每年收取的學(xué)費(fèi)總額最高多?指出:資源數(shù)量一定,如何安排使用它們,使得效益最好,這是線性規(guī)劃中常見的問題之一結(jié)合上述兩例子總結(jié)歸納一下解決這類問題的思路和方法:簡(jiǎn)單線性規(guī)劃問題就是求線性目標(biāo)函數(shù)在線性約束條件下的最優(yōu)解,無論此類題目是以什么實(shí)際問題提出,其求解的格式與步驟是不變的:(1)尋找線性約束條件,線性目標(biāo)函數(shù);(2)由二元一次不等式表示的平面區(qū)域做出可行域;(3)在可行域內(nèi)求目標(biāo)函數(shù)的最優(yōu)解3.隨堂練習(xí)課本第91頁練習(xí)24.課時(shí)小結(jié)線性規(guī)劃的兩類重要實(shí)際問題的解題思路:首先,應(yīng)準(zhǔn)確建立數(shù)學(xué)模型,即根據(jù)題意找出約束條件,確定線性目標(biāo)函數(shù)。然后,用圖解法求得數(shù)學(xué)模型的解,即畫出可行域,在可行域內(nèi)求得使目標(biāo)函數(shù)取得最值的解,最后,要根據(jù)實(shí)際意義將數(shù)學(xué)模型的解轉(zhuǎn)化為實(shí)際問題的解,即結(jié)合實(shí)際情況求得最優(yōu)解。5.作業(yè)課本第93頁習(xí)題3.3[A]組的第3題(第9課時(shí))課題:§3.3.2簡(jiǎn)單的線性規(guī)劃【教學(xué)目標(biāo)】1.知識(shí)與技能:掌握線性規(guī)劃問題的圖解法,并能應(yīng)用它解決一些簡(jiǎn)單的實(shí)際問題;2.過程與方法:經(jīng)歷從實(shí)際情境中抽象出簡(jiǎn)單的線性規(guī)劃問題的過程,提高數(shù)學(xué)建模能力;3.情態(tài)與價(jià)值:引發(fā)學(xué)生學(xué)習(xí)和使用數(shù)學(xué)知識(shí)的興趣,發(fā)展創(chuàng)新精神,培養(yǎng)實(shí)事求是、理論與實(shí)際相結(jié)合的科學(xué)態(tài)度和科學(xué)道德。【教學(xué)重點(diǎn)】利用圖解法求得線性規(guī)劃問題的最優(yōu)解;【教學(xué)難點(diǎn)】把實(shí)際問題轉(zhuǎn)化成線性規(guī)劃問題,并給出解答,解決難點(diǎn)的關(guān)鍵是根據(jù)實(shí)際問題中的已知條件,找出約束條件和目標(biāo)函數(shù),利用圖解法求得最優(yōu)解?!窘虒W(xué)過程】1.課題導(dǎo)入[復(fù)習(xí)引入]:1、二元一次不等式Ax+By+C>0在平面直角坐標(biāo)系中表示直線Ax+By+C=0某一側(cè)所有點(diǎn)組成的平面區(qū)域(虛線表示區(qū)域不包括邊界直線)2、目標(biāo)函數(shù),線性目標(biāo)函數(shù),線性規(guī)劃問題,可行解,可行域,最優(yōu)解:3、用圖解法解決簡(jiǎn)單的線性規(guī)劃問題的基本步驟:2.講授新課1.線性規(guī)劃在實(shí)際中的應(yīng)用:在上一節(jié)例4中,若生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤(rùn)為10000元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤(rùn)為5000元,那么分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大的利潤(rùn)?2.課本第91頁的“閱讀與思考”——錯(cuò)在哪里?若實(shí)數(shù),滿足求4+2的取值范圍.錯(cuò)解:由①、②同向相加可求得:0≤2≤4即0≤4≤8③由②得—1≤—≤1將上式與①同向相加得0≤2≤4④③十④得0≤4十2≤12以上解法正確嗎?為什么?(1)[質(zhì)疑]引導(dǎo)學(xué)生閱讀、討論、分析.(2)[辨析]通過討論,上述解法中,確定的0≤4≤8及0≤2≤4是對(duì)的,但用的最大(小)值及的最大(小)值來確定4十2的最大(小)值卻是不合理的.X取得最大(?。┲禃r(shí),y并不能同時(shí)取得最大(?。┲怠S捎诤雎粤藊和y的相互制約關(guān)系,故這種解法不正確.(3)[激勵(lì)]產(chǎn)生上述解法錯(cuò)誤的原因是什么?此例有沒有更好的解法?怎樣求解?正解:因?yàn)?x+2y=3(x+y)+(x-y)且由已有條件有:(5)(6)將(5)(6)兩式相加得所以3.隨堂練習(xí)11、求的最大值、最小值,使、滿足條件2、設(shè),式中變量、滿足4.課時(shí)小結(jié)[結(jié)論一]線性目標(biāo)函數(shù)的最大值、最小值一般在可行域的頂點(diǎn)處取得.[結(jié)論二]線性目標(biāo)函數(shù)的最大值、最小值也可能在可行域的邊界上取得,即滿足條件的最優(yōu)解有無數(shù)多個(gè).5.作業(yè)課本第93頁習(xí)題3.3[A]組的第4題(第10課時(shí))課題:§3.4基本不等式【教學(xué)目標(biāo)】1.知識(shí)與技能:學(xué)會(huì)推導(dǎo)并掌握基本不等式,理解這個(gè)基本不等式的幾何意義,并掌握定理中的不等號(hào)“≥”取等號(hào)的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等;2.過程與方法:通過實(shí)例探究抽象基本不等式;3.情態(tài)與價(jià)值:通過本節(jié)的學(xué)習(xí),體會(huì)數(shù)學(xué)來源于生活,提高學(xué)習(xí)數(shù)學(xué)的興趣【教學(xué)重點(diǎn)】應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索不等式的證明過程;【教學(xué)難點(diǎn)】基本不等式等號(hào)成立條件【教學(xué)過程】1.課題導(dǎo)入基本不等式的幾何背景:如圖是在北京召開的第24界國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去象一個(gè)風(fēng)車,代表中國(guó)人民熱情好客。你能在這個(gè)圖案中找出一些相等關(guān)系或不等關(guān)系嗎?教師引導(dǎo)學(xué)生從面積的關(guān)系去找相等關(guān)系或不等關(guān)系。2.講授新課1.探究圖形中的不等關(guān)系將圖中的“風(fēng)車”抽象成如圖,在正方形ABCD中右個(gè)全等的直角三角形。設(shè)直角三角形的兩條直角邊長(zhǎng)為a,b那么正方形的邊長(zhǎng)為。這樣,4個(gè)直角三角形的面積的和是2ab,正方形的面積為。由于4個(gè)直角三角形的面積小于正方形的面積,我們就得到了一個(gè)不等式:。當(dāng)直角三角形變?yōu)榈妊苯侨切?,即a=b時(shí),正方形EFGH縮為一個(gè)點(diǎn),這時(shí)有。2.得到結(jié)論:一般的,如果3.思考證明:你能給出它的證明嗎?證明:因?yàn)楫?dāng)所以,,即4.1)從幾何圖形的面積關(guān)系認(rèn)識(shí)基本不等式特別的,如果a>0,b>0,我們用分別代替a、b,可得,通常我們把上式寫作:2)從不等式的性質(zhì)推導(dǎo)基本不等式用分析法證明:要證(1)只要證a+b(2)要證(2),只要證a+b-0(3)要證(3),只要證(-)(4)顯然,(4)是成立的。當(dāng)且僅當(dāng)a=b時(shí),(4)中的等號(hào)成立。3)理解基本不等式的幾何意義探究:課本第98頁的“探究”在右圖中,AB是圓的直徑,點(diǎn)C是AB上的一點(diǎn),AC=a,BC=b。過點(diǎn)C作垂直于AB的弦DE,連接AD、BD。你能利用這個(gè)圖形得出基本不等式的幾何解釋嗎?易證Rt△ACD∽Rt△DCB,那么CD2=CA·CB即CD=.這個(gè)圓的半徑為,顯然,它大于或等于CD,即,其中當(dāng)且僅當(dāng)點(diǎn)C與圓心重合,即a=b時(shí),等號(hào)成立.因此:基本不等式幾何意義是“半徑不小于半弦”評(píng)述:1.如果把看作是正數(shù)a、b的等差中項(xiàng),看作是正數(shù)a、b的等比中項(xiàng),那么該定理可以敘述為:兩個(gè)正數(shù)的等差中項(xiàng)不小于它們的等比中項(xiàng).2.在數(shù)學(xué)中,我們稱為a、b的算術(shù)平均數(shù),稱為a、b的幾何平均數(shù).本節(jié)定理還可敘述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù).[補(bǔ)充例題]例1已知x、y都是正數(shù),求證:(1)≥2;(2)(x+y)(x2+y2)(x3+y3)≥8x3y3.分析:在運(yùn)用定理:時(shí),注意條件a、b均為正數(shù),結(jié)合不等式的性質(zhì)(把握好每條性質(zhì)成立的條件),進(jìn)行變形.解:∵x,y都是正數(shù)∴>0,>0,x2>0,y2>0,x3>0,y3>0(1)=2即≥2.(2)x+y≥2>0x2+y2≥2>0x3+y3≥2>0∴(x+y)(x2+y2)(x3+y3)≥2·2·2=8x3y3即(x+y)(x2+y2)(x3+y3)≥8x3y3.3.隨堂練習(xí)1.已知a、b、c都是正數(shù),求證(a+b)(b+c)(c+a)≥8abc分析:對(duì)于此類題目,選擇定理:(a>0,b>0)靈活變形,可求得結(jié)果.解:∵a,b,c都是正數(shù)∴a+b≥2>0b+c≥2>0c+a≥2>0∴(a+b)(b+c)(c+a)≥2·2·2=8abc即(a+b)(b+c)(c+a)≥8abc.4.課時(shí)小結(jié)本節(jié)課,我們學(xué)習(xí)了重要不等式a2+b2≥2ab;兩正數(shù)a、b的算術(shù)平均數(shù)(),幾何平均數(shù)()及它們的關(guān)系(≥).它們成立的條件不同,前者只要求a、b都是實(shí)數(shù),而后者要求a、b都是正數(shù).它們既是不等式變形的基本工具,又是求函數(shù)最值的重要工具(下一節(jié)我們將學(xué)習(xí)它們的應(yīng)用).我們還可以用它們下面的等價(jià)變形來解決問題:ab≤,ab≤()2.5.作業(yè)課本第100頁習(xí)題[A]組的第1題(第11課時(shí))課題:§3.4基本不等式【教學(xué)目標(biāo)】1.知識(shí)與技能:進(jìn)一步掌握基本不等式;會(huì)應(yīng)用此不等式求某些函數(shù)的最值;能夠解決一些簡(jiǎn)單的實(shí)際問題2.過程與方法:通過兩個(gè)例題的研究,進(jìn)一步掌握基本不等式,并會(huì)用此定理求某些函數(shù)的最大、最小值。3.情態(tài)與價(jià)值:引發(fā)學(xué)生學(xué)習(xí)和使用數(shù)學(xué)知識(shí)的興趣,發(fā)展創(chuàng)新精神,培養(yǎng)實(shí)事求是、理論與實(shí)際相結(jié)合的科學(xué)態(tài)度和科學(xué)道德?!窘虒W(xué)重點(diǎn)】基本不等式的應(yīng)用【教學(xué)難點(diǎn)】利用基本不等式求最大值、最小值?!窘虒W(xué)過程】1.課題導(dǎo)入1.重要不等式:如果2.基本不等式:如果a,b是正數(shù),那么我們稱的算術(shù)平均數(shù),稱的幾何平均數(shù)成立的條件是不同的:前者只要求a,b都是實(shí)數(shù),而后者要求a,b都是正數(shù)。2.講授新課例1(1)用籬

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論