




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題18等差數(shù)列與等比數(shù)列十年大數(shù)據(jù)全景展示年份題號(hào)文17理5考點(diǎn)考查內(nèi)容等差數(shù)列與等比數(shù)等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式及等差數(shù)列的前n項(xiàng)和公式,2011列綜合問(wèn)題邏輯思維能力、運(yùn)算求解能力等比數(shù)列通項(xiàng)公式及性質(zhì)等比數(shù)列問(wèn)題2012文14文17理3等比數(shù)列問(wèn)題等差數(shù)列問(wèn)題等比數(shù)列問(wèn)題等比數(shù)列問(wèn)題等差數(shù)列問(wèn)題等比數(shù)列n項(xiàng)和公式卷2等差數(shù)列通項(xiàng)公式、前n項(xiàng)和公式、性質(zhì),方程思想等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式及方程思想等比數(shù)列前n項(xiàng)和公式2013卷2卷1文6卷2文5等比中項(xiàng)、等差數(shù)列通項(xiàng)公式及前n項(xiàng)和公式n2014卷2理17文5等比數(shù)列問(wèn)題等比數(shù)列問(wèn)題卷2等比數(shù)列通項(xiàng)公式及方程思想卷2卷2文5等差數(shù)列問(wèn)題等差數(shù)列問(wèn)題等比數(shù)列問(wèn)題等差通項(xiàng)公式、性質(zhì)及前n項(xiàng)和公式數(shù)列前nS與a關(guān)系、等差數(shù)列定義及通項(xiàng)公式理16nn2015卷2理4等比數(shù)列通項(xiàng)公式及方程思想等比數(shù)列問(wèn)題卷1文13等比數(shù)列定義及前n項(xiàng)和公式卷1卷2文7等差數(shù)列問(wèn)題等差數(shù)列問(wèn)題等差數(shù)列與等比數(shù)列綜合問(wèn)題等差數(shù)列通項(xiàng)公式、前n項(xiàng)和公式,方程思想文17等差數(shù)列通項(xiàng)公式及對(duì)新概念的理解與應(yīng)用,運(yùn)算求解能力卷1文17理3n等差數(shù)列通項(xiàng)公式、前n項(xiàng)和公式、性質(zhì)2016卷1等差數(shù)列問(wèn)題等差數(shù)列與等比數(shù)等比數(shù)列通項(xiàng)公式、等差數(shù)列前n項(xiàng)和公式及二次函數(shù)最值問(wèn)題,卷1理15列綜合問(wèn)題函數(shù)與方程思想等比數(shù)列問(wèn)題卷3理14等比數(shù)列通項(xiàng)公式及方程思想2017卷3卷2理9等差數(shù)列問(wèn)題等差數(shù)列通項(xiàng)公式及前n項(xiàng)和公式、等比數(shù)列概念,方程思想文17等差數(shù)列與等比數(shù)等差數(shù)列通項(xiàng)公式及前nn列的綜合問(wèn)題等比數(shù)列問(wèn)題等差數(shù)列與等比數(shù)列的綜合問(wèn)題等差數(shù)列問(wèn)題公式,方程思想卷2卷1卷1理3文17理4等比數(shù)列定義及前n項(xiàng)和公式及傳統(tǒng)文化等比數(shù)列通項(xiàng)公式、前n項(xiàng)和公式及等差數(shù)列定義,方程思想等差數(shù)列的通項(xiàng)公式及前n項(xiàng),方程思想卷317等比數(shù)列問(wèn)題卷217等差數(shù)列問(wèn)題等比數(shù)列通項(xiàng)公式、前n項(xiàng)和公式,方程思想與運(yùn)算求解能力等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式及前n等比數(shù)列定義、通項(xiàng)公式,運(yùn)算求解能力2018卷1卷1文17理4等比數(shù)列問(wèn)題等差數(shù)列問(wèn)題等差數(shù)列問(wèn)題等差數(shù)列通項(xiàng)公式與前n項(xiàng)和公式,方程思想卷3卷3卷2文14理5等差數(shù)列通項(xiàng)公式與前n項(xiàng)和公式,方程思想等比數(shù)列問(wèn)題等差數(shù)列與等比數(shù)列綜合問(wèn)題等比數(shù)列通項(xiàng)公式與前n項(xiàng)和公式,方程思想文18等比數(shù)列的通項(xiàng)公式、等差數(shù)列定義及前n項(xiàng)和公式,方程思想等差數(shù)列與等比數(shù)2019卷2理19文14文18列的綜合問(wèn)題等比數(shù)問(wèn)題卷1卷1等比數(shù)列通項(xiàng)公式與前n項(xiàng)和公式,方程思想等差數(shù)列通項(xiàng)公式與前n想等差數(shù)列問(wèn)題卷1卷1理14理9理等比數(shù)列問(wèn)題等差數(shù)列問(wèn)題等比數(shù)列通項(xiàng)公式與前n項(xiàng)和公式,方程思想等差數(shù)列通項(xiàng)公式與前n項(xiàng)和公式,方程思想卷1文10理4理6文6等比數(shù)列問(wèn)題等差數(shù)列問(wèn)題等比數(shù)列問(wèn)題等比數(shù)列問(wèn)題等比數(shù)列的性質(zhì),等比數(shù)列基本量的計(jì)算,方程思想等差數(shù)列通項(xiàng)公式、前n項(xiàng)和公式,方程思想,數(shù)學(xué)文化等比數(shù)列通項(xiàng)公式、前n項(xiàng)和公式,方程思想2020卷2等比數(shù)列通項(xiàng)公式與前n項(xiàng)和公式,方程思想大數(shù)據(jù)分析預(yù)測(cè)高考出現(xiàn)頻率2021年預(yù)測(cè)考點(diǎn)58等差數(shù)列問(wèn)題15/37202159等比數(shù)列問(wèn)題考點(diǎn)60等差數(shù)列與等比數(shù)列的綜合問(wèn)題9/3713/37前n項(xiàng)和公式,題型為選擇填空題或解答題的第1小題,難度為基礎(chǔ)題或中檔題.十年試題分類探求規(guī)律考點(diǎn)58等差數(shù)列問(wèn)題(2020全國(guó)Ⅱ理(稱為天心石),環(huán)繞天心石砌9塊扇面形石板構(gòu)成第一環(huán),向外每環(huán)依次增加9塊,下一層的第一環(huán)比上一層的最后一環(huán)多99塊.已知每層環(huán)數(shù)相同,且下層比中層多面形石板不含天心石)A.塊()B.塊C.塊D.塊【答案】C【思路導(dǎo)引】第n環(huán)天石心塊數(shù)為a,第一層共有n環(huán),則a}9為首項(xiàng),9為公差的等差數(shù)列,nnSa}SSSS729S,解方程即可得到n,進(jìn)一步得到.3n設(shè)為n項(xiàng)和,由題意可得nn3n2n2nn【解析】設(shè)第n環(huán)天石心塊數(shù)為a,第一層共有n環(huán),則a}9為首項(xiàng),9為公差的等差數(shù)列,nnan9(n9nSa}為n項(xiàng)和,則第一層、第二層、第三層的塊數(shù)分別為nnS,SS,SSSSSS729,因?yàn)橄聦颖戎袑佣?29塊,所以n2nn3n2n3n2n2nnn(927n)2n(918n)2n(918n)n(99n)729,解得n9,所以9n2222227(9927)SS3402,故選.3n2721d(2020浙江7)已知等差數(shù)列的前項(xiàng)和annSd0,1bS,bSS,nN,n12n1n22n下列等式不可能成立的是()2aaabbbB.2282bb28C.4D.4A.426426【答案】B【解析】A.由等差數(shù)列的性質(zhì)可知2aaa,成立;426.bSSa,bSSa,bSSaaa9,456623236789若bbbaaa2aa,aa4266399639即ddd0,這與已知矛盾,故B不成立;aaadada7d,整理為:adC成立;2.a(chǎn)42281111D.bSSaaaa,當(dāng)2842bb時(shí),即6aa,整理為328925a2dad,即2a2125ad45d120,方程有解,故D成立.綜上0,a5d111可知,等式不可能成立的是B,故選B..(2019記S為等差數(shù)列a}n項(xiàng)和.已知S0,a5()nn451A.n2n5【答案】A.nn10.Snn2nD.Sn2n2n2416d01d513d2【解析】設(shè)等差數(shù)列a}的公差為dS0,a5,,n45a2n5,Sn2n,故選A.nn.(2018記S為等差數(shù)列a}n項(xiàng)和.若SSS,a2a()nn32415A.12.10.10D.12【答案】B3243【解析】S為等差數(shù)列a}n項(xiàng)和,SSSa23ad)aad4ad,nn3241111122把a(bǔ)2,代入得d3,a24(10,B.15(2017記S為等差數(shù)列a}naa24,S48a}的公差為()nn456nA.1.2.4D.8【答案】Cada4d11【解析】由題知,,解得12,d4,故選C.6561d26.(2017?新課標(biāo)Ⅲ,理9)等差數(shù)列a}的首項(xiàng)為1,公差不為0.若a,a,a成等比數(shù)列,則a}前6n236n項(xiàng)的和為(A.24).3.3D.8【答案】A【解析】等差數(shù)列a}的首項(xiàng)為,公差不為0.a(chǎn),a,a成等比數(shù)列,a2aa,n236326(1d)2(adad),且1,d0,解得d2,an}前6項(xiàng)的和為1116565S6ad61(2)24A.6122.(2016已知等差數(shù)列a}前9項(xiàng)的和為27,a8a()n10100A.100.99.98D.97【答案】C9(aa)92a【解析】由題知,S91959a=27,∴a3,又a8=a5d35d,d1,5510522aa95d98,故選C1005(20157)已知a}是公差為1的等差數(shù)列,S為a}nS4Sa()nnn8422(A)(B)(C)(D)12【答案】B1112【解析】∵公差d1,S4S,∴8a874(4a4,解得a=,∴84111221192aa9d9,故選.12.(2015新課標(biāo)Ⅱ,文5)設(shè)S是等差數(shù)列a}項(xiàng)和,若naaa3S,則(5)nn135A.5B.7.9D.【答案】A5aa【解析】aaaa3a1,S51535A.135332(20145)等差數(shù)列a}n的公差是2成等比數(shù)a}nnSn()a,a,a248n(nn(nA.n(n【答案】A.n(n.D.22a,a,aa2428(16)2(a2)(a14)aSnn2n=2,248111A.(2017浙江)已知等差數(shù)列a的公差為dn項(xiàng)和為S,則“d0”是nn“SS2S”的()465A.充分不必要條件C.充分必要條件B.必要不充分條件D.既不充分也不必要條件【答案】C(SS)(SS)aadd0SS2SSS2Sd0655465465465d0”是“SS2S”充分必要條件,選.465212.(2015重慶)在等差數(shù)列a中,若a426()nA.-1.0C1D.6【答案】B【解析】由等差數(shù)列的性質(zhì)得aaa2240Ba2.6424.(2015浙江)已知a}是等差數(shù)列,公差d不為零,前n項(xiàng)和是Sa,a,a成等比數(shù)列,則()nn348.a(chǎn)d0.a(chǎn)d01414.a(chǎn)d0D.a(chǎn)d01414【答案】B5a,a,a成等比數(shù)列可得:(1+d)2=(a+2d)×(a+7d)a+5d=0a=-d,34811113(a+a)′421d<0dS4=14d=2(2a+d)d=-d12<0.23.(2014遼寧)設(shè)等差數(shù)列an}的公差為d,若數(shù)列aa1n}為遞減數(shù)列,則()A.d0.d0.1d0D.1d0【答案】C函數(shù),∴1d0.a(chǎn)a1}為遞減數(shù)列,的一次aaaand]adnaad)nn1n11111.(2014福建)等差數(shù)列a}nSaS12a()nn136A8.10.12D.14【答案】C【解析】設(shè)等差數(shù)列a}的公差為dSad32dd2a12.n316.(2014重慶)在等差數(shù)列a}aaaa()n1357A.5B.8C.D.14【答案】B【解析】由等差數(shù)列的性質(zhì)得aaaa,因?yàn)閍2,aa10,所以a8B.17351357.(2013遼寧)下面是關(guān)于d0的等差數(shù)列a}的四個(gè)命題:na是遞增數(shù)列;nnp:數(shù)列a是遞增數(shù)列;p:數(shù)列1n2an4:nnd3:n其中的真命題為A.1,2.3,4.2,3D.1,4【答案】Daandmpannn12n2n11nann1并非遞增所以p錯(cuò);如果若an1,則滿足已知,但1p,是遞減數(shù)列,所以2nn3a4m,所以是遞增數(shù)列,p正確.n4n.(2012福建)等差數(shù)列aaa10,a7,則數(shù)列a的公差為()n154A1.2.3D.4【答案】B【解析】由題意有aaa,a5,又∵a7,∴aa2d2.1533443.(2012遼寧)在等差數(shù)列中,已知a+a,則該數(shù)列前S=()an48A.58.88.143D.176【答案】Ba+a【解析】aaaaS=16,故選B.48662.江西)設(shè)a}為等差數(shù)列,公差d2,S為其前n項(xiàng)和,若SS,nn則1()A18.20.22D24【答案】B【解析】由SSaSS0,aad010).1n.天津)已知a為等差數(shù)列,其公差為2,且a是a與a的等比中項(xiàng),S為a的前n項(xiàng)和,nnN*10的值為A.-739nB.-90.90D.【答案】D【解析】因?yàn)閍是a與a的等比中項(xiàng),所以a27aa,又?jǐn)?shù)列a的公差為2,所以73939n(112)2(a4)(a16),解得a,故a20(n(22n,所以111n10(aa)S15(202)110.2.(20208)在等差數(shù)列{a}a9,a1,記Taaan),則數(shù)列{T}n15n12nn()A.有最大項(xiàng),有最小項(xiàng).有最大項(xiàng),無(wú)最小項(xiàng).無(wú)最大項(xiàng),無(wú)最小項(xiàng).無(wú)最大項(xiàng),有最小項(xiàng)【答案】A【解析】設(shè)公差為d,a=4dd=2a,1n5使,a<0n6時(shí),a>,所以n=4時(shí),Tn51nnn0n=5T0n6T0nTT無(wú)最小nnnn項(xiàng).故選A.a(chǎn)aa(20207)已知等差數(shù)列a}的首項(xiàng)a0aaa129.n11910278【答案】aa...a5914d27d析】由條件可知2a9da8dad,129.111add81278故答案為:.10S5.?新課標(biāo)Ⅲ,理14)記S為等差數(shù)列a}n項(xiàng)和,若a0,aa.nn121【答案】410S510(aa)1105(15)【解析】設(shè)等差數(shù)列a}的公差為d,則由a0,aa可得,d2a,n12112(219d)214d2(2a18a)2181114..?新課標(biāo)Ⅱ,理16)設(shè)數(shù)列a}n項(xiàng)和為Sa1,aSSS.nn1n1n1nn1【答案】n111【解析】n1SS,SSSS,1,又111,1n1nn1nn1nSnSn1111{}是以首項(xiàng)是1、公差為1的等差數(shù)列,n,S.nSSnnn1.(2015安徽)已知數(shù)列a}a1,aa(n≥2),則數(shù)列a}9項(xiàng)和等于______.n1nn1n2【答案】2711【解析】∵a1,aa(n≥2),所以數(shù)列a}是首項(xiàng)為1,公差為的等差數(shù)列,所以前9項(xiàng)1nn1n22981和S9927.22(2019江蘇8)已知數(shù)列{nnN*)S是其前naaaSS的n25898.【答案】16(ad)(a4d)a7d0a5111【解析】設(shè)等差數(shù)列a}的首項(xiàng)為a,公差為,則d98,解得1,n191d27d2287dSa6(152.812(2019北京理10)設(shè)等差數(shù)列的前n項(xiàng)和為SaSa5________.Snann25的最小值為_(kāi)______.【答案】,-10aad314d121aa4d0【解析】由題意得,,解得,所以.Sa510d1051514344110.a(chǎn)a0S的最小值為S或S,SS5n5n4542.(2018北京)設(shè)a}是等差數(shù)列,且a3,aa36,則a}的通項(xiàng)公式為_(kāi)__.n125n【答案】1412d0【解析】解法一設(shè)a}的公差為d,首項(xiàng)為a,n1a5da6d141114d276,所以S7(4)7214.2解法二2a7d14,所以d2aad2S7a7214.34374.(2018上海)記等差數(shù)列a}的前幾項(xiàng)和為Sa0,aa14S=.nn3677【答案】n6n3【解析】設(shè)等差數(shù)列的公差為d,aaadad6d,∴d6,∴2511n3(n6n3.25aa4567.(2015廣東)在等差數(shù)列a中,若aaaaa.n328【答案】10【解析】由aaaaa25得a=25,所以a=5a+a=a=10.3456755285.(2014北京)若等差數(shù)列aaaa0,aa0,則當(dāng)n__時(shí)n7897an項(xiàng)和最大.n【答案】8aa090【解析】∵數(shù)列aaaaa,a0aan78988789n時(shí),其前n項(xiàng)和最大..(2014江西)在等差數(shù)列aa7,公差為dn項(xiàng)和為S,當(dāng)且僅當(dāng)n8時(shí)S取最大值,n1nn則d的取值范圍_________.7【答案】()8d07【解析】由題意可知,當(dāng)且僅當(dāng)n8時(shí)S取最大值,可得a0,解得1d.n8890aaa7aa_____.n.(2013廣東)在等差數(shù)列【答案】20中,已知385aa3adadad【解析】依題意219d,所以.571111.(2012北京)已知a}為等差數(shù)列,S為其前n項(xiàng)和.若a,Sa,nn1232則2;Sn=.n(n【答案】,4121214【解析】設(shè)公差為d,則2ada2da代入得da1S=n,n(n1112.(2012江西)設(shè)數(shù)列ab}都是等差數(shù)列,若ab7,ab21ab___________.nn113355【答案】35【解析】因?yàn)閿?shù)列ab}都是等差數(shù)列,所以數(shù)列ab也是等差數(shù)列.故由等差中項(xiàng)的性質(zhì),得nnnn72,解得ab35.55abab2abab55113355.(2012廣東)已知遞增的等差數(shù)列a}a1,aa3224an=____.n1【答案】ann1aaa22412dd)4d2an2n12【解析】13.廣東)等差數(shù)列a}前9項(xiàng)的和等于前4項(xiàng)的和.若a1,aa0,n1k4則k=_________.【答案】1098431【解析】設(shè)a}的公差為d,由SS及a1,得91d41d,所以d.又n94122611aa0,所以(k((4(0k.k466.?新課標(biāo)Ⅰ,文18)記S為等差數(shù)列a}n項(xiàng)和,已知Sa.nn95若a4a}的通項(xiàng)公式;3n若10,求使得Snan的n的取值范圍.【解析】根據(jù)題意,等差數(shù)列n}中,設(shè)其公差為d,(aa)9若SaS199aa,變形可得a0a4d0,555195925a3若34d2,2則aa(nd2n10,n3n(n若Snan1d1(nd,2當(dāng)n1時(shí),不等式成立,d1(nd1,當(dāng)n2時(shí),有,變形可得214(n2)()21(aa)9SaS199aa,則有a0a4d0,則有,9595551210,則有n,2n,綜合可得:2n,nN..?新課標(biāo)Ⅱ,理(文)17)記S為等差數(shù)列a}n項(xiàng)和,已知a7,S15.nn13求n}的通項(xiàng)公式;求S,并求S的最小值.nn【解析】等差數(shù)列a}a7,S15,n13a7,ad15,解得a7,d2,111n72(n2n9;a7,d2,a2n9,1nn1S(aa)(2n216n)n28n(n4)16,2n1n22當(dāng)n4時(shí),前n項(xiàng)的和Sn取得最小值為16..?新課標(biāo)Ⅱ,文17)等差數(shù)列a}aa4,aa6.n3457Ⅰ)求n}的通項(xiàng)公式;Ⅱ)設(shè)b[a],求數(shù)列b}10項(xiàng)和,其中[x]表示不超過(guò)x的最大整數(shù),如[0.9]0,[2.6]2.nnn【解析】Ⅰ)設(shè)等差數(shù)列n}的公差為d,aa4,aa6.3457215d42110d6,a11解得:2,d523an;n55Ⅱ)b[a],nnbbb1,123bb2,45bbb3,678bb4.910故數(shù)列b}10S3122332424.n10.(2013新課標(biāo)Ⅱ,文17)已知等差數(shù)列a}的公差不為零,a25a,a,a成等比數(shù)列.n111113(Ⅰ)求an}的通項(xiàng)公式;求aaaa3n2;147【解析】Ⅰ)設(shè){an}的公差為d,由題意,a2=aa,1即(110d)2a(a12d),11∵125,∴d=0(舍去)或d=-2,∴ann;Ⅱ)令S=aaaa3n2n147()3n2=6n31,{3n2}是首項(xiàng)為25,公差為的等差數(shù)列,nn∴S=(aa)=(6n56)=n28n.2n13n222.(2014浙江)已知等差數(shù)列a}的公差d0a}n項(xiàng)和為S,a1,nnn1SS.23(Ⅰ)求d及Sn;(Ⅱ)求,k(m,kN*)的值,使得amam1am2amk65.【解析】Ⅰ)由題意,(2adad),11將11代入上式得d2或d5,d0,所以d2,從而an2n1,Sn2(nnN).Ⅱ)由(1)aaa(2mkk,nn1nk(2mkk,由,kN(2mkk1,2mk1k15m5k4,所以..(2013福建)已知等差數(shù)列an}的公差d1n項(xiàng)和為.Sn(Ⅰ)若a,a成等比數(shù)列,求a;131Ⅱ)若Saaa的取值范圍.5191【解析】(Ⅰ)因?yàn)閿?shù)列an}的公差d11,a成等比數(shù)列,3a21(12),1即a21120,解得或.a(chǎn)1a211Ⅱ)因?yàn)閿?shù)列an}的公差d1Saa519,511018a2;1即11100,解得5122.福建)已知等差數(shù)列=1,aa33.a(chǎn)n1(Ⅰ)求數(shù)列的通項(xiàng)公式;an()若數(shù)列kSkk的值.a(chǎn)n【解析】(Ⅰ)設(shè)等差數(shù)列a}的公差為daa(nd.nn1由aa可得12d12d=2.從而,n1(n(32.Ⅱ)由(I)n32n,2nS2nn.2n2S可得2kk2進(jìn)而由1即k22k350,解得kk,故k7為所求.又kN*.(2013江蘇)設(shè)a是首項(xiàng)為a,公差為d的等差數(shù)列d0,S是其前n項(xiàng)和.nnn記bn,nN*,其中c為實(shí)數(shù).n2cSn2Skk,nN*()若c0,bb,b成等比數(shù)列,證明:;124Ⅱ)若b是等差數(shù)列,證明:c0.n【證明】Ⅰ)若,,,又由題,,是等差數(shù)列,首項(xiàng)為,公差為,成等比數(shù)列,,,,,,,,().Ⅱ,,是等差數(shù)列,則可設(shè),是常數(shù),恒成立.整理得:,恒成立.,,.考點(diǎn)59等比數(shù)列問(wèn)題78.(2020全國(guó)Ⅰ文10)設(shè)a是等比數(shù)列,且aaa1,aa+a2aaa()n1232346A.12..D.【答案】Dq【思路導(dǎo)引】根據(jù)已知條件求得的值,再由a78aaaq5a可求得結(jié)果.6123【解析】設(shè)等比數(shù)列的公比為q21,aaaaa1qqn1231q2aaaaqaq21q3aq1qq2,234111aaaaq51q61q71q51qq2q532D.6781Sanaaaan則.(2020全國(guó)Ⅱ文6)記Sn為等比數(shù)列n項(xiàng)和.若5364an()A.2n.2n.22n1D.n11【答案】B【思路導(dǎo)引】根據(jù)等比數(shù)列的通項(xiàng)公式,可以得到方程組,解方程組求出首項(xiàng)和公比,最后利用等比數(shù)列n的通項(xiàng)公式和前項(xiàng)和公式進(jìn)行求解即可.42q2aqaqq【解析】設(shè)等比數(shù)列的公比為aaaa11可得:,536415qa13aq1aqn)12nSnn21naaqn12n1,Sn,因此n2n,故選.n1121∴n11q122.(2020全國(guó)Ⅱ理6)數(shù)列a}a2,aaaaak2ak25k()n1mnmnk1A.2B.3C.4D.5【答案】Ca的通項(xiàng)公式,利用等比數(shù)列求和公式n【思路導(dǎo)引】取m1,可得出數(shù)列a是等比數(shù)列,求得數(shù)列nk可得出關(guān)于的等式,由kNk可求得的值.a(chǎn)2,【解析】在等式amn中,令m1,可得aaaa,n1nmnn1n1naa22n12,n所以,數(shù)列2為首項(xiàng),以2為公比的等比數(shù)列,則nna12k11k1,1221ak12ak2ak2k151212k4.故選:.k125k15,解得(20195)已知各項(xiàng)均為正數(shù)的等比數(shù)列a}4項(xiàng)和為15aa4aa()n5313A.16.8.4D.2【答案】C【解析】設(shè)等比數(shù)列a}的公比為q(q0),則由前4項(xiàng)和為aa4an53123,11aaqaq1q1112,3224,故選C.a(chǎn)q41q1q21(20173)增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈()A.1盞.3盞.5盞D.9盞【答案】B12)127【解析】設(shè)塔頂?shù)腶盞燈,由題意a}是公比為2的等比數(shù)列,S381,1n713B..(2015已知等比數(shù)列a}a3,aaa21aaa()n1135357A.21.42.63D.8417,q【解析】a3,aaa21,aq2q4)21,q4q24q260,11351q22,aaaa(q2q4q6)3(24B.35711a1.(2015新課標(biāo)Ⅱ,文9)已知等比數(shù)列an},aa4a1a()354241128【答案】C.a(chǎn)41q38q2aaa24a1a2412aaq3544212.(2013新課標(biāo)Ⅰ,文6)設(shè)首項(xiàng)為1,公比為的等比數(shù)列{an項(xiàng)和為Snn3A.S=2a1B.S=a2C.Sn=4anD.Sn=32annnnn【答案】D21an3【解析】Sn==32anD231.(2013新課標(biāo)Ⅱ,理3)等比數(shù)列{a}n項(xiàng)和為S,已知Saa,a=9a=nn3215113.1319D.19A..【答案】.1【解析】由題知aaa=a10aaq12251191q99=a=aq4,∴a=,故選.123219.(2012新課標(biāo),理5)已知數(shù)列{a}為等比數(shù)列,aa=2,aa=-aa=n47561A.7B.5C.-5D.-7【答案】D.【解析】∵aa=aa-,aa=2a=4,a-2a-,a=4,475647474714q3當(dāng)a=4,a2q3-,aa=4q6=-7,47124q3當(dāng)a=2,aq3=2,aa=4q6-,故選D.47143(2013大綱)已知數(shù)列aaa10項(xiàng)和等于anann1n21A.3)B.10).10)D.)9【答案】C14131aa是等比數(shù)列,又43313,ana2a41Sn1n1331C.12.(2018北京)“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計(jì)算出半音比例,為這個(gè)理論的發(fā)展做出了重要貢獻(xiàn).十二平均律將一個(gè)純八度音程分成十二份,依次得到十三個(gè)單音,從第二個(gè)單音起,每一個(gè)單音的頻率與它的前一個(gè)單音的頻率的比都等于122.若第一個(gè)單音的頻率為f,則第八個(gè)單音的頻率為A.32f【答案】D12B.32.125D.1272f2f2f2為ff122a},n則第八個(gè)單音頻率為8f2)8127f,故選D..(2018浙江)a,a,a,a成等比數(shù)列,且aaaaaaa)a1123412341231A.a(chǎn)a,aa.a(chǎn)a,aa413244132.a(chǎn)a,aaD.a(chǎn)a,aa1324132【答案】B【解析】x≤x1(x0),所以aaaaaaa)1234123≤aaa1,所以a≤1a1,所以等比數(shù)列的公比q0.12341若q≤1aaaaaqq20,12341而aaa≥a1,所以ln(aaa)0,1231123與ln(aaa)aaaa≤0矛盾,12312341q0,所以aaaq2)0,aaaqq)0,2131241aa,aa,故選.1324.(2014重慶)對(duì)任意等比數(shù)列an},下列說(shuō)法一定正確的是A.a(chǎn),a,a成等比數(shù)列.a(chǎn),a,a成等比數(shù)列139236C.a(chǎn),a,a成等比數(shù)列D.a(chǎn),a,a成等比數(shù)列269248【答案】Daaa0,因此a,a,a一定成等比數(shù)列.2【解析】由等比數(shù)列的性質(zhì)得,396269.(2012北京)已知an}為等比數(shù)列.下面結(jié)論中正確的是A.a(chǎn)a?a.a(chǎn)3122?222132aaaaDaaaa31421312【答案】B【解析】取特殊值可排除A、、,由均值不等式可得123?2aa2a2.1322.遼寧)若等比數(shù)列an}aa16n,則公比為nn1A2.4C8D.16【答案】Baa16n1aann1n216,兩式相除得n1n2n116,【解析】由nn116nanan1∴q16aa16n,可知公比q為正數(shù),∴q4.2nn11.?新課標(biāo)Ⅰ,理14)記S為等比數(shù)列a}n項(xiàng)和.若a,a24aS.nn16533【答案】135)3【解析】在等比數(shù)列中,由426q6a21q5a0q0,q3S.15133.?新課標(biāo)Ⅰ,文14)記S為等比數(shù)列a}n項(xiàng)和,若a1,SS.nn134458【答案】31q331等比數(shù)列a}的前n項(xiàng)和,a1,S,q1,q2q0n1341q4411111q45161可得,qS.421q82126,則19.(2015新課標(biāo)Ⅰ,文13)數(shù)列a中aa2a,S為a的前n項(xiàng)和,若Sn1n1nnnnn.【答案】62)12n【解析】∵aaa,∴數(shù)列a是首項(xiàng)為2,公比為2的等比數(shù)列,∴S,1n1nnn∴2n64,∴n=6..?新課標(biāo)Ⅲ,理14)設(shè)等比數(shù)列a}aa1,aa3a.n12134【答案】8a}的公比為qaa1aa3aq)1aq2)311,n121311q2則4(8.3.(2012新課標(biāo),文等比數(shù)列{a}n項(xiàng)和為SS+3S=0,則公比q=_______n32n【答案】q時(shí),S=a,S=2aS+3S=0得,9a=0a與{a}q≠32312111n1q1q3)aq)12S+3S=00,解得q=2.321q74(2017江蘇)等比數(shù)列a}n項(xiàng)的和為SSS8=.nn364【答案】32S61q63aq3)7an}的公比為qq11q9q2331,S31q1q411得a,所以aaq727232.518144.(2017北京)若等差數(shù)列和等比數(shù)列abanb1ab8,,n114422則=_____.【答案】1dq的公比為,由題意ab13dq83【解析】設(shè)的公差為,,nna2132(2)d3,q2,所以1..(2016年浙江)設(shè)數(shù)列a}n項(xiàng)和為SS4,a2S1,nN*nn2n1na=,S=.15【答案】.1aa41112a11aSSS1Sn,所以Sn12)a2a1n1n1nn21213S}為首項(xiàng),3為公比的等比數(shù)列,n22133n1,所以S5.Sn22.(2015安徽)已知數(shù)列a}n是遞增的等比數(shù)列,aaaa8,則數(shù)列a}n的前n項(xiàng)和等1423于.【答案】2n-1aa9144aa8aa1或a}是遞增的等比數(shù)列,naaaa8141231441aqn)12naa8q38q2nSa}n121.n14n1q12.(2014廣東)等比數(shù)列的各項(xiàng)均為正數(shù),且aa415ana+a+a+a+a=________.2122232425【答案】5【解析】由等比數(shù)列的性質(zhì)可知aaaaa2,于是,由aa4得a2,15243153故aaaaa32a+a+a+a+a=123452122232425(aaaaa)5.2123452.(2014廣東)若等比數(shù)列an的各項(xiàng)均為正數(shù),且aaaa2e59aaa.12【答案】50【解析】因a是等比數(shù)列,∴aaaaaaaaaa2e得5n199aae5aaaln(aaa)ln(aa10.∴1121220120.(2014江蘇)在各項(xiàng)均為正數(shù)的等比數(shù)列an}aaa2aa28646是.【答案】4【解析】設(shè)等比數(shù)列a}的公比為q,q0aaaaq444q224q2(負(fù)2n864值舍去)21,所以aaq4.462.(2013廣東)設(shè)數(shù)列a}是首項(xiàng)為,公比為12的等比數(shù)列,則na|a|a|a.1234【答案】15【解析】aaaa8a|a|a|a.1234123435(2013北京)若等比數(shù)列aaa=20aa=40q=nSn=.n24【答案】2n12212naa=qaa得q2;aaaqq3a2S2n12.35242411n121.(2013江蘇)在正項(xiàng)等比數(shù)列ana5,aa3.則滿足267aaa...aaaaa的最大正整數(shù)n的值為.123n123n【答案】121211q4【解析】設(shè)正項(xiàng)等比數(shù)列a}首項(xiàng)為a,公比為q,則:,得:1=,q=2,n132aqq)315(n1)n2n1(n1)n2n1n26nTaaan12naaa22Tnn22,,n12n525212n2n51n5時(shí),n13化簡(jiǎn)得:2n12,當(dāng)nn2.當(dāng)=12時(shí),T12212222當(dāng)n13Tn12.131332.(2012江西)等比數(shù)列a的前n項(xiàng)和為S,公比不為1.若a1,且對(duì)任意的nN都有nn1aaa0S=_________________.n2n1n5【答案】aaa0aqn2aq2a0a1可知aq1q2,n2n1nnn1nS5.a(chǎn)012(aa)5ann2n1,則數(shù)列n的公比33.(2012遼寧)已知等比數(shù)列an}為遞增數(shù)列,若q.,且【答案】2122(aa)a2aq2)nqq)q,qq2nn2n1n因?yàn)閿?shù)列為遞增數(shù)列,且1qq2..(2012浙江)設(shè)公比為q(q0)的等比數(shù)列a}n項(xiàng)和為SSa2,nn22Sa2q.4432【答案】24aq)1q22aq2aqa2q201q111【解析】依題意可得,aq)2aq4q312q201q3211q兩式相減可得21q421q21q31q02q42q2qq0,333q1()或q0或q.因?yàn)閝0,所以q.221.(2011北京)在等比數(shù)列a}a,a4,則公比q=______________;n142aaa____________.12n12n1【答案】22122)n11aaq3得4q3,解得q2,aaa2n1.【解析】4112n1222.(2017?新課標(biāo)Ⅱ,文已知等差數(shù)列a}的前n項(xiàng)和為S,等比數(shù)列b}的前n項(xiàng)和為T,a1,nnnn1b1,ab2.122若ab5b}的通項(xiàng)公式;33n若T21S.33【解析】設(shè)等差數(shù)列a}的公差為d,等比數(shù)列b}的公比為q,nna1,b1,ab2,ab5,11223231dq2,1dq5,d1,q2或d3,q0(舍去),則n}的通項(xiàng)公式為nb1,T21,2n1,nN*;13可得1qqq4或5,當(dāng)q4b4,a242,2,22d2(1,S31236;當(dāng)q5b5,a2(7,22d7(8,S3171521.a(chǎn)nn.?新課標(biāo)Ⅰ,文17)已知數(shù)列a}a1,na2(nab.n1n1nn求b,b,b;123判斷數(shù)列n}是否為等比數(shù)列,并說(shuō)明文由;求n}的通項(xiàng)公式.【解析】數(shù)列a}a1,na2(nn,n1n1n1n1n2常數(shù)),nnnn,n1n2,b}b為首項(xiàng),2為公比的等比數(shù)列.n1整文得:nb2n12n1,1所以:b1,b2,b4.123n}是為等比數(shù)列,n1n2常數(shù));由(1)n2n1,nnn,所以:nn1..?新課標(biāo)Ⅲ,理文等比數(shù)列a}a1,a4a.n153求n}的通項(xiàng)公式;記S為a}n項(xiàng)和.若S63m.nnm【解析】等比數(shù)列a}a1,a4a.n1531q44q),2q2,當(dāng)q2n2n1,當(dāng)q2n(n1,a}的通項(xiàng)公式為,an1n(n1.nn記S為a}n項(xiàng)和.nn1q1qn)1(2)n1(2)n當(dāng)a1,q2S,1n1(2)31(2)m由S63S63,mN,無(wú)解;mm31q1qn)12n當(dāng)a1,q2S21,n1n12由S63S2m1,mN,mmm6.39(2014新課標(biāo)Ⅱ,理17)已知數(shù)列aa=1,aa1.n1n1nn12Ⅰ)a是等比數(shù)列,并求a的通項(xiàng)公式;n1113Ⅱ)證明:.12n212a11n1【解析】Ⅰ∵aa1,∴a3(a),即:3n1nn1n122(a)n21313又a,∴a}是以為首項(xiàng),3為公比的等比數(shù)列.1n22223n113n13,即an∴n222Ⅱ由Ⅰ)知an1,∴3n121n1(n)2nan31311()n11111∴1aaan33131323()]n23n123112311132故:2a1n3.(2013天津)已知首項(xiàng)為的等比數(shù)列a}n項(xiàng)和為S(nN,且2S,S,4S成等差數(shù)列.4nn232Ⅰ)求數(shù)列n}的通項(xiàng)公式;16Ⅱ)Sn(nN.Sn解析】Ⅰ)設(shè)等比數(shù)列a的公比為q,因?yàn)?S,S,4S成等差數(shù)列,n234S2S4SSSSSS,可得2aa,32434324434313qa,所以等比數(shù)列a的通項(xiàng)公式為n122n13132nan(n1.221nⅡ)S1,n212,為奇數(shù)n2(2nn1121Sn1Snn111,n為偶數(shù)nn22(211113當(dāng)n為奇數(shù)時(shí),Sn隨n的增大而減小,所以Sn1S2.SnSn1611125當(dāng)n為偶數(shù)時(shí),Sn隨的增大而減小,所以nSn.SnSnS212113故對(duì)于nN*Sn.Sn6.江西)已知兩個(gè)等比數(shù)列ab},滿足aa(a),ba,nnba,ba.(Ⅰ)若a,求數(shù)列an}的通項(xiàng)公式;)若數(shù)列an}唯一,求a的值.【解析】(Ⅰ)設(shè)n}的公比為q,b1ab2aq2q,b3aq23q2則123由b,b,b成等比數(shù)列得(2q)2q)2123即q2q2q22,q2212所以n}的通項(xiàng)公式為n(22)n1或(2a2)n1.n)設(shè)n}的公比為q,則由(2aq)得a1由aa2a222a0,故方程(*)有兩個(gè)不同的實(shí)根1由n}唯一,知方程(*)必有一根為0,代入(*)得a.3.(2013湖北)S是等比數(shù)列{a}n項(xiàng)和,S,S,S成等差數(shù)列,nn423且23418.()求數(shù)列{n}的通項(xiàng)公式;()是否存在正整數(shù)n,使得Sn2013?若存在,求出符合條件的所有n的集合;若不存在,說(shuō)明理由.【解析】Ⅰ)設(shè)數(shù)列{a}的公比為qa0,q0.由題意得n1SSSS,aq21qaqqq131q2,124321即aaa2)q234故數(shù)列{n}的通項(xiàng)公式為nn1.3(2)]1(2)nⅡ)由()有Sn1(2)(0,上式不成立;22n11.n.若存在n,使得Sn2013,則1(nn當(dāng)n為偶數(shù)時(shí),(當(dāng)n為奇數(shù)時(shí),(nnnn綜上,存在符合條件的正整數(shù)n,且所有這樣的n的集合為nnkk,k.考點(diǎn)60等差數(shù)列與等比數(shù)列的綜合問(wèn)題qab}是公比為的等比數(shù)列,已知nnna}d是公差為的等差數(shù)列,b}.(202011)設(shè)nnSnn2n2nnN*)dq的值是________.【答案】3【解析】∵ab}nSnn2n2nnN),*nn當(dāng)n1ab1;11當(dāng)n2abSnSn12n22n1,∴ab4,從而有dqab)ab)3.nn222211.(2016課標(biāo)卷115)設(shè)等比數(shù)列滿足aa=10aa=5aa的最大值為.132412n【答案】6411225=aaq(aa)10q,解得q=,所以aa()a=8,所以數(shù)列a}2413111n2n(nn2n7nn21aaqaaaa1n123(n8n()223n222n3或434112n2122時(shí),表達(dá)式取得最大值:2264.6(2013重慶)已知是等差數(shù)列,a11d0,S為其前a,a,a125annnS8.【答案】6487a1且a,a,aa(a4d)(ad)2d2S8ad64.11251118124.江蘇)設(shè)1aaa,其中a,a,a,a成公比為q的等比數(shù)列,a,a,a成公差為11271357246的等差數(shù)列,則q的最小值是________.33【答案】2t1≤t≤q≤t1≤q2≤t2≤q3t≥1q≥t,tt2},3故q的最小值是33..(2017記S為等比數(shù)列a}n項(xiàng)和.已知S2,S6.nn23)求n}的通項(xiàng)公式;求S,并判斷S,S,S是否成等差數(shù)列.nn1nn2【解析】設(shè)等比數(shù)列a}首項(xiàng)為a,公比為q,n13q283q8則aSS628a,2,3321q2q88由aa2,2,整理得:q2q40,解得:q2,12q2q則12,n(n1(,na}的通項(xiàng)公式a(n;nnaq1qn)(n][2(n1],1由(1)可知:Sn11(31n2,Sn2[2(2)n3],[2(2)]1則Sn1331[2(2)n][2(2)n1],由Sn1Sn223331[4(2)(2)n1(2)2(2)n1],311[42(2)n1]2[(2(2)n1,332Sn,即Sn1Sn22Sn,S,S,S成等差數(shù)列.n1nn2(201919)已知數(shù)列a}和b}a1b04aab4bba4.nn11n1nnn1nn證明:ab}是等比數(shù)列,ab}是等差數(shù)列;nnnn求a}和b}的通項(xiàng)公式.nn【解析】證明:4n1ab4,bba4;nnn1nn4(n1b)2(ab),4(ab)4(ab)8;n1nnn1n1nn1即n1n1(ab),an1ab2;nnn1nn2又ab1,ab1,11111ab}是首項(xiàng)為1,公比為的等比數(shù)列,nn2ab}是首項(xiàng)為,公差為2的等差數(shù)列;nn1由(1)可得:ab()n1,nn2ab12(n2n1;nn11121a()nn,b()nn.nn222.(2019?新課標(biāo)Ⅱ,文18)已知a}的各項(xiàng)均為正數(shù)的等比數(shù)列,a2,a2a16.n132求n}的通項(xiàng)公式;設(shè)ba,求數(shù)列b}n項(xiàng)和.n2nn【解析】設(shè)等比數(shù)列的公比為q,由a2,a2aqq,2132即q2q80,解得q2舍)或q4.a(chǎn)aqn12n12n1;n1n2n22n1n1,b1,bb2(n12n12,1n1nn}1為首項(xiàng),以2為公差的等差數(shù)列,n(n2則數(shù)列b}nTn1n.2nn21(201617)a}是公差為3b}b1babbn.nn12nn1n13Ⅰ)求n}的通項(xiàng)公式;Ⅱ)求n}n項(xiàng)和.【解析】Ⅰ)abbn.nn1n1當(dāng)n1abbb.12211b1,b,12312,an}是公差為3的等差數(shù)列,nn1,Ⅱ)由(I)nn1n1n.即n1n.1即數(shù)列b}1為首項(xiàng),以為公比的等比數(shù)列,n311()nb}nSn)331.3nn1222n11311.課標(biāo),文已知等比數(shù)列{a}a=,公比q=.n1331aⅠ)S{a}n項(xiàng)和,證明:S=n;nnn2Ⅱ)設(shè)b=aaa,求數(shù)列{b的通項(xiàng)公式.n31323nn11a1n1【解析】(Ⅰ)()33.nn3111)1n1n33n3Sn===12213n(nbaaa2n)n31323n2n(n所以bn}的通項(xiàng)公式為bn.2a}nS*b}n是等比數(shù)列,公比大于0,其前項(xiàng)n.(2018天津)設(shè)是等差數(shù)列,其前項(xiàng)和為(nN);nnT*b1bb2baa(nN).已知,,,132435nbaa.;546S和Tn求nSTTT)abnn,求正整數(shù)的值.若n12nn【解析】設(shè)等比數(shù)列的公比為qb1,bb2,可得2qq20.n13212nq0,可得q2n2n1.所以n21.n12設(shè)等差數(shù)列a}的公差為dbaa,可得ad4.n4351由baa,可得adad1,54611n(n故an,所以S.nn2TTT(21232n)n2n1n2.由(1)12nn(n由STTT)ab2n1n2n2n1,n12nnn2整理得nn40,解得n1舍)n4.所以n的值為.2(2015四川)設(shè)數(shù)列a}nSaaa,aa成等差數(shù)列nnn1123求數(shù)列an}的通項(xiàng)公式;11記數(shù)列{}nT,求得|T1|成立的n的最小值.nnan【解析】由已知s2aa有ass,aan2n1nn1nnn1n,n1即aan2na2a,a4a.2131又因?yàn)閍,aa成等差數(shù)列,即aaa.123132a4a2(2a,解得a2.1111a2nn所以,數(shù)列an}是首項(xiàng)為2,公比為2的等比數(shù)列.故.11由(1)得.n2n121n21()]11111T
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 民爆設(shè)施使用安全合同
- 菊花種苗購(gòu)銷合同
- 特許經(jīng)營(yíng)合同
- 電商運(yùn)營(yíng)合作合同協(xié)議書(shū)
- 車輛過(guò)戶協(xié)議合同
- 建筑施工分包合同書(shū)
- 職場(chǎng)裝修合同規(guī)定
- Unit 6 A Day in the Life Section A 1a-Pronunciation教學(xué)設(shè)計(jì)2024-2025學(xué)年人教版英語(yǔ)七年級(jí)上冊(cè)
- 2《丁香結(jié)》教學(xué)設(shè)計(jì)2024-2025學(xué)年統(tǒng)編版語(yǔ)文六年級(jí)上冊(cè)
- 陜西電子信息職業(yè)技術(shù)學(xué)院《寒區(qū)水力計(jì)算》2023-2024學(xué)年第二學(xué)期期末試卷
- 人教版(PEP)英語(yǔ)四年級(jí)下冊(cè)-Unit 1My school A Lets spell 課件
- 現(xiàn)代控制理論課件-矩陣復(fù)習(xí)
- 蘋果主要病蟲(chóng)害防治課件
- 中小學(xué)心理健康教育教師技能培訓(xùn)專題方案
- 高速公路隧道管理站專業(yè)知識(shí)競(jìng)賽試題與答案
- 中國(guó)傳媒大學(xué)《廣播節(jié)目播音主持》課件
- 2015 年全國(guó)高校俄語(yǔ)專業(yè)四級(jí)水平測(cè)試試卷
- T∕CCCMHPIE 1.3-2016 植物提取物 橙皮苷
- 土石壩設(shè)計(jì)畢業(yè)設(shè)計(jì)
- 一季責(zé)任制整體護(hù)理持續(xù)改進(jìn)實(shí)例
- 清華抬頭信紙
評(píng)論
0/150
提交評(píng)論