版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年浙江省寧波市成考專升本高等數(shù)學一自考預測試題(含答案)學校:________班級:________姓名:________考號:________
一、單選題(20題)1.設(shè)等于()A.A.-1B.1C.-cos1D.1-cos1
2.設(shè)二元函數(shù)z==()A.1
B.2
C.x2+y2
D.
3.已知斜齒輪上A點受到另一齒輪對它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過A點的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計算有誤的是()。
A.圓周力FT=Fncosαcosβ
B.徑向力Fa=Fncosαcosβ
C.軸向力Fr=Fncosα
D.軸向力Fr=Fnsinα
4.鋼筋混凝土軸心受拉構(gòu)件正截面承載力計算時,用以考慮縱向彎曲彎曲影響的系數(shù)是()。
A.偏心距增大系數(shù)B.可靠度調(diào)整系數(shù)C.結(jié)構(gòu)重要性系數(shù)D.穩(wěn)定系數(shù)
5.若級數(shù)在x=-1處收斂,則此級數(shù)在x=2處
A.發(fā)散B.條件收斂C.絕對收斂D.不能確定
6.()A.A.(-∞,-3)和(3,+∞)
B.(-3,3)
C.(-∞,O)和(0,+∞)
D.(-3,0)和(0,3)
7.設(shè)y=2^x,則dy等于().
A.x.2x-1dx
B.2x-1dx
C.2xdx
D.2xln2dx
8.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
9.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,4
10.設(shè)函數(shù)f(x)在點x0處連續(xù),則下列結(jié)論肯定正確的是()。A.
B.
C.
D.
11.
12.設(shè)f(x)在點x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
13.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)14.()。A.3B.2C.1D.015.A.0B.2C.2f(-1)D.2f(1)16.微分方程y'+x=0的通解()。A.
B.
C.
D.
17.
18.微分方程(y)2+(y)3+sinx=0的階數(shù)為
A.1B.2C.3D.4
19.建立共同愿景屬于()的管理觀念。
A.科學管理B.企業(yè)再造C.學習型組織D.目標管理20.級數(shù)()。A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)二、填空題(20題)21.
22.
23.
24.設(shè)y=x2+e2,則dy=________
25.
26.
27.
28.曲線y=x/2x-1的水平漸近線方程為__________。
29.設(shè).y=e-3x,則y'________。
30.y=ln(1+x2)的單調(diào)增加區(qū)間為______.
31.曲線y=x3-3x+2的拐點是__________。
32.
33.
34.
35.
36.
37.
38.39.
40.
三、計算題(20題)41.42.求曲線在點(1,3)處的切線方程.43.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
44.
45.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.46.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.47.當x一0時f(x)與sin2x是等價無窮小量,則
48.
49.
50.證明:51.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.52.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
53.求微分方程y"-4y'+4y=e-2x的通解.
54.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.55.將f(x)=e-2X展開為x的冪級數(shù).56.
57.58.求微分方程的通解.
59.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
60.四、解答題(10題)61.
62.判定y=x-sinx在[0,2π]上的單調(diào)性。
63.
64.
65.
確定a,b使得f(x)在x=0可導。66.設(shè)y=3x+lnx,求y'.
67.
68.
69.證明:在區(qū)間(0,1)內(nèi)有唯一實根.70.五、高等數(shù)學(0題)71.若需求函數(shù)q=12—0.5p,則P=6時的需求彈性r/(6)=_________。
六、解答題(0題)72.
參考答案
1.B本題考查的知識點為可變上限的積分.
由于,從而知
可知應選B.
2.A
3.C
4.D
5.C由題意知,級數(shù)收斂半徑R≥2,則x=2在收斂域內(nèi)部,故其為絕對收斂.
6.D
7.D南微分的基本公式可知,因此選D.
8.C
9.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.
10.D本題考查的知識點為連續(xù)性的定義,連續(xù)性與極限、可導性的關(guān)系由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項D正確,C不正確。由于連續(xù)性并不能保證f(x)的可導性,可知A不正確。自于連續(xù)必定能保證極限等于f(x0),而f(x0)不一定等于0,B不正確。故知應選D。
11.A
12.A若點x0為f(x)的極值點,可能為兩種情形之一:(1)若f(x)在點x0處可導,由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點x=0處取得極小值,但f(x)=|x|在點x=0處不可導,這表明在極值點處,函數(shù)可能不可導。故選A。
13.A
14.A
15.C本題考查了定積分的性質(zhì)的知識點。
16.D所給方程為可分離變量方程.
17.B解析:
18.B
19.C解析:建立共同愿景屬于學習型組織的管理觀念。
20.A本題考查的知識點為級數(shù)的絕對收斂與條件收斂。
由于的p級數(shù),可知為收斂級數(shù)。
可知收斂,所給級數(shù)絕對收斂,故應選A。
21.
22.
23.y=1y=1解析:24.(2x+e2)dx
25.
26.
27.0
28.y=1/2
29.-3e-3x30.(0,+∞)本題考查的知識點為利用導數(shù)符號判定函數(shù)的單調(diào)性.
由于y=ln(1+x2),其定義域為(-∞,+∞).
又由于,令y'=0得唯一駐點x=0.
當x>0時,總有y'>0,從而y單調(diào)增加.
可知y=ln(1+x2)的單調(diào)增加區(qū)間為(0,+∞).
31.(02)
32.3yx3y-13yx3y-1
解析:
33.11解析:
34.55解析:
35.
36.
37.12x
38.
39.1/3本題考查了定積分的知識點。
40.(sinx+cosx)exdx(sinx+cosx)exdx解析:
41.
42.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
43.
44.
45.
列表:
說明
46.函數(shù)的定義域為
注意
47.由等價無窮小量的定義可知
48.
49.
則
50.
51.
52.
53.解:原方程對應的齊次方程為y"-4y'+4y=0,
54.由二重積分物理意義知
55.56.由一階線性微分方程通解公式有
57.
58.
59.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
60.
61.
解法1利用等價無窮小量代換.
解法2利用洛必達法則.
62.因為在[02π]內(nèi)y'=1-cosx≥0可知在[02π]上y=x-sinx單調(diào)增加。因為在[0,2π]內(nèi),y'=1-cosx≥0,可知在[0,2π]上y=x-sinx單調(diào)增加。
63.
64.
65.
①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導一定連續(xù)∴a+b=1②
∵可導f-"(x)=f+"(x)∴b=-4∴a=5①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導一定連續(xù)∴a+b=1②∵可導f-"(x)=f+"(x)∴b=-4∴a=5①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導一定連續(xù)∴a+b=1②∵可導f-"(x)=f+"(x)∴b=-4∴a=5
66.本題考查的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年繁華商圈店鋪租賃合同3篇
- 2024年跨國保險業(yè)務分銷合同
- 2024年版:項目合作風險共擔協(xié)議
- 2024黃山旅游紀念品設(shè)計合同
- 2025年度大理石石材進出口貿(mào)易承包合同規(guī)范3篇
- 2024藝術(shù)品代理銷售與藝術(shù)品展覽策劃合同3篇
- 2024蔬菜產(chǎn)地直供與電商平臺合作意向協(xié)議書3篇
- 2025年度物業(yè)費收取與調(diào)整協(xié)議3篇
- 2024甲乙雙方共建智慧城市戰(zhàn)略合作合同
- 西南大學《特殊兒童運動康復》2023-2024學年第一學期期末試卷
- 飲水機維護服務協(xié)議書模板
- 深入學習2024《軍隊生態(tài)環(huán)境保護條例》
- 眼藥水項目創(chuàng)業(yè)計劃書
- 2024年全國《國防和兵役》理論知識競賽試題庫與答案
- 家居保潔課件
- 換電站(充電樁)安全風險告知
- 經(jīng)營性房屋租賃項目投標方案(技術(shù)標)
- 入戶調(diào)查合同范本
- 七年級道法上冊第一學期期末綜合測試卷(人教版 2024年秋)
- 標桿地產(chǎn)五星級酒店精裝修標準
- DZ∕T 0153-2014 物化探工程測量規(guī)范(正式版)
評論
0/150
提交評論