2023屆福建省莆田第二十五中學達標名校初三中考“集結號”最后沖刺模擬卷數學試題含解析_第1頁
2023屆福建省莆田第二十五中學達標名校初三中考“集結號”最后沖刺模擬卷數學試題含解析_第2頁
2023屆福建省莆田第二十五中學達標名校初三中考“集結號”最后沖刺模擬卷數學試題含解析_第3頁
2023屆福建省莆田第二十五中學達標名校初三中考“集結號”最后沖刺模擬卷數學試題含解析_第4頁
2023屆福建省莆田第二十五中學達標名校初三中考“集結號”最后沖刺模擬卷數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023屆福建省莆田第二十五中學達標名校初三中考“集結號”最后沖刺模擬卷數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,△ABC在邊長為1個單位的方格紙中,它的頂點在小正方形的頂點位置.如果△ABC的面積為10,且sinA=,那么點C的位置可以在()A.點C1處 B.點C2處 C.點C3處 D.點C4處2.如圖,點D、E分別為△ABC的邊AB、AC上的中點,則△ADE的面積與四邊形BCED的面積的比為()A.1:2 B.1:3 C.1:4 D.1:13.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算4.如圖,已知射線OM,以O為圓心,任意長為半徑畫弧,與射線OM交于點A,再以點A為圓心,AO長為半徑畫弧,兩弧交于點B,畫射線OB,那么∠AOB的度數是()A.90° B.60° C.45° D.30°5.如圖,△ABC中,若DE∥BC,EF∥AB,則下列比例式正確的是()A. B.C. D.6.小桐把一副直角三角尺按如圖所示的方式擺放在一起,其中,,,,則等于A. B. C. D.7.如圖,把長方形紙片ABCD折疊,使頂點A與頂點C重合在一起,EF為折痕.若AB=9,BC=3,試求以折痕EF為邊長的正方形面積()A.11 B.10 C.9 D.168.小明在一次登山活動中撿到一塊礦石,回家后,他使用一把刻度尺,一只圓柱形的玻璃杯和足量的水,就測量出這塊礦石的體積.如果他量出玻璃杯的內直徑d,把礦石完全浸沒在水中,測出杯中水面上升了高度h,則小明的這塊礦石體積是()A. B. C. D.9.如圖,是反比例函數圖象,陰影部分表示它與橫縱坐標軸正半軸圍成的區(qū)域,在該區(qū)域內不包括邊界的整數點個數是k,則拋物線向上平移k個單位后形成的圖象是A. B.C. D.10.如圖,半徑為的中,弦,所對的圓心角分別是,,若,,則弦的長等于()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,中,,,,,平分,與相交于點,則的長等于_____.12.如圖,在矩形ABCD中,AD=5,AB=4,E是BC上的一點,BE=3,DF⊥AE,垂足為F,則tan∠FDC=_____.13.如圖,Rt△ABC中,∠BAC=90°,AB=3,AC=6,點D,E分別是邊BC,AC上的動點,則DA+DE的最小值為_____.14.某學校組織學生到首鋼西十冬奧廣場開展綜合實踐活動,數學小組的同學們在距奧組委辦公樓(原首鋼老廠區(qū)的筒倉)20m的點B處,用高為0.8m的測角儀測得筒倉頂點C的仰角為63°,則筒倉CD的高約為______m.(精確到0.1m,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)15.Rt△ABC中,AD為斜邊BC上的高,若,則.16.我國自主研發(fā)的某型號手機處理器采用10nm工藝,已知1nm=0.000000001m,則10nm用科學記數法可表示為_____m.17.某校準備從甲、乙、丙、丁四個科創(chuàng)小組中選出一組,參加區(qū)青少年科技創(chuàng)新大賽,表格反映的是各組平時成績的平均數(單位:分)及方差S2,如果要選出一個成績較好且狀態(tài)穩(wěn)定的組去參賽,那么應選的組是_____.甲乙丙丁7887s211.20.91.8三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,∠ACB=90°,O是邊AC上一點,以O為圓心,以OA為半徑的圓分別交AB、AC于點E、D,在BC的延長線上取點F,使得BF=EF.(1)判斷直線EF與⊙O的位置關系,并說明理由;(2)若∠A=30°,求證:DG=DA;(3)若∠A=30°,且圖中陰影部分的面積等于2,求⊙O的半徑的長.19.(5分)如圖,某數學活動小組為測量學校旗桿AB的高度,沿旗桿正前方米處的點C出發(fā),沿斜面坡度的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內,AB⊥BC,AB//DE.求旗桿AB的高度.(參考數據:sin37°≈,cos37°≈,tan37°≈.計算結果保留根號)20.(8分)如圖,點D為△ABC邊上一點,請用尺規(guī)過點D,作△ADE,使點E在AC上,且△ADE與△ABC相似.(保留作圖痕跡,不寫作法,只作出符合條件的一個即可)21.(10分)興發(fā)服裝店老板用4500元購進一批某款T恤衫,由于深受顧客喜愛,很快售完,老板又用4950元購進第二批該款式T恤衫,所購數量與第一批相同,但每件進價比第一批多了9元.第一批該款式T恤衫每件進價是多少元?老板以每件120元的價格銷售該款式T恤衫,當第二批T恤衫售出時,出現了滯銷,于是決定降價促銷,若要使第二批的銷售利潤不低于650元,剩余的T恤衫每件售價至少要多少元?(利潤=售價﹣進價)22.(10分)隨著中國傳統節(jié)日“端午節(jié)”的臨近,東方紅商場決定開展“歡度端午,回饋顧客”的讓利促銷活動,對部分品牌粽子進行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.打折前甲、乙兩種品牌粽子每盒分別為多少元?陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?23.(12分)計算:﹣16+(﹣)﹣2﹣|﹣2|+2tan60°24.(14分)為響應學校全面推進書香校園建設的號召,班長李青隨機調查了若干同學一周課外閱讀的時間(單位:小時),將獲得的數據分成四組,繪制了如下統計圖(:,:,:,:),根據圖中信息,解答下列問題:(1)這項工作中被調查的總人數是多少?(2)補全條形統計圖,并求出表示組的扇形統計圖的圓心角的度數;(3)如果李青想從組的甲、乙、丙、丁四人中先后隨機選擇兩人做讀書心得發(fā)言代表,請用列表或畫樹狀圖的方法求出選中甲的概率.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】如圖:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案為D.2、B【解析】

根據中位線定理得到DE∥BC,DE=BC,從而判定△ADE∽△ABC,然后利用相似三角形的性質求解.【詳解】解:∵D、E分別為△ABC的邊AB、AC上的中點,∴DE是△ABC的中位線,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面積:△ABC的面積==1:4,∴△ADE的面積:四邊形BCED的面積=1:3;故選B.【點睛】本題考查三角形中位線定理及相似三角形的判定與性質.3、B【解析】

有旋轉的性質得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結論.【詳解】把△IBE繞B順時針旋轉90°,使BI與AB重合,E旋轉到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【點睛】本題考查了勾股定理,利用了旋轉的性質:旋轉前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關鍵.4、B【解析】

首先連接AB,由題意易證得△AOB是等邊三角形,根據等邊三角形的性質,可求得∠AOB的度數.【詳解】連接AB,根據題意得:OB=OA=AB,∴△AOB是等邊三角形,∴∠AOB=60°.故答案選:B.【點睛】本題考查了等邊三角形的判定與性質,解題的關鍵是熟練的掌握等邊三角形的判定與性質.5、C【解析】

根據平行線分線段成比例定理找準線段的對應關系,對各選項分析判斷后利用排除法求解.【詳解】解:∵DE∥BC,∴=,BD≠BC,∴≠,選項A不正確;∵DE∥BC,EF∥AB,∴=,EF=BD,=,∵≠,∴≠,選項B不正確;∵EF∥AB,∴=,選項C正確;∵DE∥BC,EF∥AB,∴=,=,CE≠AE,∴≠,選項D不正確;故選C.【點睛】本題考查了平行線分線段成比例定理;熟練掌握平行線分線段成比例定理,在解答時尋找對應線段是關?。?、C【解析】

根據三角形的內角和定理和三角形外角性質進行解答即可.【詳解】如圖:,,,,∴==,故選C.【點睛】本題考查了三角形內角和定理、三角形外角的性質、熟練掌握相關定理及性質以及一副三角板中各個角的度數是解題的關鍵.7、B【解析】

根據矩形和折疊性質可得△EHC≌△FBC,從而可得BF=HE=DE,設BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,據此得出GF=1,由EF2=EG2+GF2可得答案.【詳解】如圖,∵四邊形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根據折疊的性質,有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,設BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,則AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故選B.【點睛】本題考查了折疊的性質、矩形的性質、三角形全等的判定與性質、勾股定理等,綜合性較強,熟練掌握各相關的性質定理與判定定理是解題的關鍵.8、A【解析】圓柱體的底面積為:π×()2,∴礦石的體積為:π×()2h=.故答案為.9、A【解析】

依據反比例函數的圖象與性質,即可得到整數點個數是5個,進而得到拋物線向上平移5個單位后形成的圖象.【詳解】解:如圖,反比例函數圖象與坐標軸圍成的區(qū)域內不包括邊界的整數點個數是5個,即,

拋物線向上平移5個單位后可得:,即,

形成的圖象是A選項.

故選A.【點睛】本題考查反比例函數圖象上點的坐標特征、反比例函數的圖象、二次函數的性質與圖象,解答本題的關鍵是明確題意,求出相應的k的值,利用二次函數圖象的平移規(guī)律進行解答.10、A【解析】作AH⊥BC于H,作直徑CF,連結BF,先利用等角的補角相等得到∠DAE=∠BAF,然后再根據同圓中,相等的圓心角所對的弦相等得到DE=BF=6,由AH⊥BC,根據垂徑定理得CH=BH,易得AH為△CBF的中位線,然后根據三角形中位線性質得到AH=BF=1,從而求解.解:作AH⊥BC于H,作直徑CF,連結BF,如圖,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH為△CBF的中位線,∴AH=BF=1.∴,∴BC=2BH=2.故選A.“點睛”本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了垂徑定理和三角形中位線性質.二、填空題(共7小題,每小題3分,滿分21分)11、3【解析】

如圖,延長CE、DE,分別交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等邊三角形,根據等腰直角三角形的性質可知CG⊥AB,可求出AG的長,進而可得GH的長,根據含30°角的直角三角形的性質可求出EH的長,根據DE=DH-EH即可得答案.【詳解】如圖,延長CE、DE,分別交AB于G、H,∵∠BAD=∠ADE=60°,∴△ADH是等邊三角形,∴DH=AD=AH=5,∠DHA=60°,∵AC=BC,CE平分∠ACB,∠ACB=90°,∴AB==8,AG=AB=4,CG⊥AB,∴GH=AH=AG=5-4=1,∵∠DHA=60°,∴∠GEH=30°,∴EH=2GH=2∴DE=DH-EH=5=2=3.故答案為:3【點睛】本題考查等邊三角形的判定及性質、等腰直角三角形的性質及含30°角的直角三角形的性質,熟記30°角所對的直角邊等于斜邊的一半的性質并正確作出輔助線是解題關鍵.12、4【解析】

首先根據矩形的性質以及垂線的性質得到∠FDC=∠ABE,進而得出tan∠FDC=tan∠AEB=ABBE【詳解】∵DF⊥AE,垂足為F,∴∠AFD=90°,∵∠ADF+∠DAF=90°,∠ADF+∠CDF=90°,∴∠DAF=∠CDF,∵∠DAF=∠AEB,∴∠FDC=∠ABE,∴tan∠FDC=tan∠AEB=ABBE,∵在矩形ABCD中,AB=4,E是BC上的一點,BE=3,∴tan∠FDC=43.故答案為【點睛】本題主要考查了銳角三角函數的關系以及矩形的性質,根據已知得出tan∠FDC=tan∠AEB是解題關鍵.13、【解析】【分析】如圖,作A關于BC的對稱點A',連接AA',交BC于F,過A'作AE⊥AC于E,交BC于D,則AD=A'D,此時AD+DE的值最小,就是A'E的長,根據相似三角形對應邊的比可得結論.【詳解】如圖,作A關于BC的對稱點A',連接AA',交BC于F,過A'作AE⊥AC于E,交BC于D,則AD=A'D,此時AD+DE的值最小,就是A'E的長;Rt△ABC中,∠BAC=90°,AB=3,AC=6,∴BC==9,S△ABC=AB?AC=BC?AF,∴3×6=9AF,AF=2,∴AA'=2AF=4,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴,∴,∴A'E=,即AD+DE的最小值是,故答案為.【點睛】本題考查軸對稱﹣最短問題、三角形相似的性質和判定、兩點之間線段最短、垂線段最短等知識,解題的關鍵是靈活運用軸對稱以及垂線段最短解決最短問題.14、40.0【解析】

首先過點A作AE∥BD,交CD于點E,易證得四邊形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后Rt△ACE中,由三角函數的定義,而求得CE的長,繼而求得筒倉CD的高.【詳解】過點A作AE∥BD,交CD于點E,∵AB⊥BD,CD⊥BD,∴∠BAE=∠ABD=∠BDE=90°,∴四邊形ABDE是矩形,∴AE=BD=20m,DE=AB=0.8m,在Rt△ACE中,∠CAE=63°,∴CE=AE?tan63°=20×1.96≈39.2(m),∴CD=CE+DE=39.2+0.8=40.0(m).答:筒倉CD的高約40.0m,故答案為:40.0【點睛】此題考查解直角三角形的應用?仰角的定義,注意能借助仰角構造直角三角形并解直角三角形是解此題的關鍵,注意數形結合思想的應用.15、【解析】

利用直角三角形的性質,判定三角形相似,進一步利用相似三角形的面積比等于相似比的性質解決問題.【詳解】如圖,∵∠CAB=90°,且AD⊥BC,∴∠ADB=90°,∴∠CAB=∠ADB,且∠B=∠B,∴△CAB∽△ADB,∴(AB:BC)1=△ADB:△CAB,又∵S△ABC=4S△ABD,則S△ABD:S△ABC=1:4,∴AB:BC=1:1.16、1×10﹣1【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10-n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:10nm用科學記數法可表示為1×10-1m,

故答案為1×10-1.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×10-n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.17、丙【解析】

先比較平均數得到乙組和丙組成績較好,然后比較方差得到丙組的狀態(tài)穩(wěn)定,于是可決定選丙組去參賽.【詳解】因為乙組、丙組的平均數比甲組、丁組大,而丙組的方差比乙組的小,所以丙組的成績比較穩(wěn)定,所以丙組的成績較好且狀態(tài)穩(wěn)定,應選的組是丙組.故答案為丙.【點睛】本題考查了方差:一組數據中各數據與它們的平均數的差的平方的平均數,叫做這組數據的方差.方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了平均數的意義.三、解答題(共7小題,滿分69分)18、(1)EF是⊙O的切線,理由詳見解析;(1)詳見解析;(3)⊙O的半徑的長為1.【解析】

(1)連接OE,根據等腰三角形的性質得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到結論;(1)根據含30°的直角三角形的性質證明即可;(3)由AD是⊙O的直徑,得到∠AED=90°,根據三角形的內角和得到∠EOD=60°,求得∠EGO=30°,根據三角形和扇形的面積公式即可得到結論.【詳解】解:(1)連接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切線;(1)∵∠AED=90°,∠A=30°,∴ED=AD,∵∠A+∠B=90°,∴∠B=∠BEF=60°,∵∠BEF+∠DEG=90°,∴∠DEG=30°,∵∠ADE+∠A=90°,∴∠ADE=60°,∵∠ADE=∠EGD+∠DEG,∴∠DGE=30°,∴∠DEG=∠DGE,∴DG=DE,∴DG=DA;(3)∵AD是⊙O的直徑,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵陰影部分的面積解得:r1=4,即r=1,即⊙O的半徑的長為1.【點睛】本題考查了切線的判定,等腰三角形的性質,圓周角定理,扇形的面積的計算,正確的作出輔助線是解題的關鍵.19、3+3.5【解析】

延長ED交BC延長線于點F,則∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4?tan37°可得答案.【詳解】如圖,延長ED交BC延長線于點F,則∠CFD=90°,∵tan∠DCF=i=,∴∠DCF=30°,∵CD=4,∴DF=CD=2,CF=CDcos∠DCF=4×=2,∴BF=BC+CF=2+2=4,過點E作EG⊥AB于點G,則GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=4?tan37°,則AB=AG+BG=4?tan37°+3.5=3+3.5,故旗桿AB的高度為(3+3.5)米.考點:1、解直角三角形的應用﹣仰角俯角問題;2、解直角三角形的應用﹣坡度坡角問題20、見解析【解析】

以DA為邊、點D為頂點在△ABC內部作一個角等于∠B,角的另一邊與AC的交點即為所求作的點.【詳解】解:如圖,點E即為所求作的點.【點睛】本題主要考查作圖-相似變換,根據相似三角形的判定明確過點D作DE∥BC并熟練掌握做一個角等于已知角的作法式解題的關鍵.21、(1)第一批T恤衫每件的進價是90元;(2)剩余的T恤衫每件售價至少要80元.【解析】

(1)設第一批T恤衫每件進價是x元,則第二批每件進價是(x+9)元,再根據等量關系:第二批進的件數=第一批進的件數可得方程;(2)設剩余的T恤衫每件售價y元,由利潤=售價﹣進價,根據第二批的銷售利潤不低于650元,可列不等式求解.【詳解】解:(1)設第一批T恤衫每件進價是x元,由題意,得,解得x=90經檢驗x=90是分式方程的解,符合題意.答:第一批T恤衫每件的進價是90元.(2)設剩余的T恤衫每件售價y元.由(1)知,第二批購進=50件.由題意,得120×50×+y×50×﹣4950≥650,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論