版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在矩形ABCD中AB=,BC=1,將矩形ABCD繞頂點B旋轉(zhuǎn)得到矩形A'BC'D,點A恰好落在矩形ABCD的邊CD上,則AD掃過的部分(即陰影部分)面積為()A. B. C. D.2.某工廠計劃生產(chǎn)210個零件,由于采用新技術(shù),實際每天生產(chǎn)零件的數(shù)量是原計劃的1.5倍,因此提前5天完成任務(wù).設(shè)原計劃每天生產(chǎn)零件個,依題意列方程為()A. B.C. D.3.三角形兩邊的長是3和4,第三邊的長是方程x2-12x+35=0的根,則該三角形的周長為()A.14 B.12 C.12或14 D.以上都不對4.如圖,在△ABC中,∠B=90°,AB=3cm,BC=6cm,動點P從點A開始沿AB向點B以1cm/s的速度移動,動點Q從點B開始沿BC向點C以2cm/s的速度移動,若P,Q兩點分別從A,B兩點同時出發(fā),P點到達B點運動停止,則△PBQ的面積S隨出發(fā)時間t的函數(shù)關(guān)系圖象大致是()A. B. C. D.5.下列性質(zhì)中菱形不一定具有的性質(zhì)是()A.對角線互相平分 B.對角線互相垂直C.對角線相等 D.既是軸對稱圖形又是中心對稱圖形6.的相反數(shù)是()A. B.- C. D.7.如圖1,點O為正六邊形對角線的交點,機器人置于該正六邊形的某頂點處,柱柱同學(xué)操控機器人以每秒1個單位長度的速度在圖1中給出線段路徑上運行,柱柱同學(xué)將機器人運行時間設(shè)為t秒,機器人到點A的距離設(shè)為y,得到函數(shù)圖象如圖2,通過觀察函數(shù)圖象,可以得到下列推斷:①該正六邊形的邊長為1;②當(dāng)t=3時,機器人一定位于點O;③機器人一定經(jīng)過點D;④機器人一定經(jīng)過點E;其中正確的有()A.①④ B.①③ C.①②③ D.②③④8.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉(zhuǎn)180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.9.在一次男子馬拉松長跑比賽中,隨機抽取了10名選手,記錄他們的成績(所用的時間)如下:選手12345678910時間(min)129136140145146148154158165175由此所得的以下推斷不正確的是()A.這組樣本數(shù)據(jù)的平均數(shù)超過130B.這組樣本數(shù)據(jù)的中位數(shù)是147C.在這次比賽中,估計成績?yōu)?30min的選手的成績會比平均成績差D.在這次比賽中,估計成績?yōu)?42min的選手,會比一半以上的選手成績要好10.某校對初中學(xué)生開展的四項課外活動進行了一次抽樣調(diào)查(每人只參加其中的一項活動),調(diào)查結(jié)果如圖所示,根據(jù)圖形所提供的樣本數(shù)據(jù),可得學(xué)生參加科技活動的頻率是()A.0.15 B.0.2 C.0.25 D.0.311.歐幾里得的《原本》記載,形如的方程的圖解法是:畫,使,,,再在斜邊上截取.則該方程的一個正根是()A.的長 B.的長 C.的長 D.的長12.下列運算正確的是()A.a(chǎn)3?a2=a6 B.(2a)3=6a3C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點,點N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是______.14.當(dāng)時,直線與拋物線有交點,則a的取值范圍是_______.15.如圖,在正方形ABCD中,AD=5,點E,F(xiàn)是正方形ABCD內(nèi)的兩點,且AE=FC=3,BE=DF=4,則EF的長為__________.16.如圖,點A、B、C是⊙O上的點,且∠ACB=40°,陰影部分的面積為2π,則此扇形的半徑為______.17.如圖,△ABC內(nèi)接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點D,若☉O的半徑為2,則CD的長為_____18.如圖,一根5m長的繩子,一端拴在圍墻墻角的柱子上,另一端拴著一只小羊A(羊只能在草地上活動),那么小羊A在草地上的最大活動區(qū)域面積是_____平方米.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)計算:(﹣2018)0﹣4sin45°+﹣2﹣1.20.(6分)如圖,∠BAC的平分線交△ABC的外接圓于點D,交BC于點F,∠ABC的平分線交AD于點E.(1)求證:DE=DB:(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑;(3)若BD=6,DF=4,求AD的長21.(6分)如圖,在平面直角坐標中,點O是坐標原點,一次函數(shù)y1=kx+b與反比例函數(shù)y2=的圖象交于A(1,m)、B(n,1)兩點.(1)求直線AB的解析式;(2)根據(jù)圖象寫出當(dāng)y1>y2時,x的取值范圍;(3)若點P在y軸上,求PA+PB的最小值.22.(8分)如圖,AB為⊙O的直徑,直線BM⊥AB于點B,點C在⊙O上,分別連接BC,AC,且AC的延長線交BM于點D,CF為⊙O的切線交BM于點F.(1)求證:CF=DF;(2)連接OF,若AB=10,BC=6,求線段OF的長.23.(8分)如圖,BD是矩形ABCD的一條對角線.(1)作BD的垂直平分線EF,分別交AD、BC于點E、F,垂足為點O.(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);(2)求證:DE=BF.24.(10分)如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,點C的對應(yīng)點C′恰好落在CB的延長線上,邊AB交邊C′D′于點E.(1)求證:BC=BC′;(2)若AB=2,BC=1,求AE的長.25.(10分)已知:如圖,A、C、F、D在同一直線上,AF=DC,AB=DE,BC=EF,求證:△ABC≌△DEF.26.(12分)計算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.27.(12分)已知:關(guān)于x的方程x2﹣(2m+1)x+2m=0(1)求證:方程一定有兩個實數(shù)根;(2)若方程的兩根為x1,x2,且|x1|=|x2|,求m的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
本題首先利用A點恰好落在邊CD上,可以求出A′C=BC′=1,又因為A′B=可以得出△A′BC為等腰直角三角形,即可以得出∠ABA′、∠DBD′的大小,然后將陰影部分利用切割法分為兩個部分來求,即面積ADA′和面積DA′D′【詳解】先連接BD,首先求得正方形ABCD的面積為,由分析可以求出∠ABA′=∠DBD′=45°,即可以求得扇形ABA′的面積為,扇形BDD′的面積為,面積ADA′=面積ABCD-面積A′BC-扇形面積ABA′=;面積DA′D′=扇形面積BDD′-面積DBA′-面積BA′D′=,陰影部分面積=面積DA′D′+面積ADA′=【點睛】熟練掌握面積的切割法和一些基本圖形的面積的求法是本題解題的關(guān)鍵.2、A【解析】
設(shè)原計劃每天生產(chǎn)零件x個,則實際每天生產(chǎn)零件為1.5x個,根據(jù)提前5天完成任務(wù),列方程即可.【詳解】設(shè)原計劃每天生產(chǎn)零件x個,則實際每天生產(chǎn)零件為1.5x個,由題意得,故選:A.【點睛】本題考查了由實際問題抽象出分式方程,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列方程即可.3、B【解析】
解方程得:x=5或x=1.當(dāng)x=1時,3+4=1,不能組成三角形;當(dāng)x=5時,3+4>5,三邊能夠組成三角形.∴該三角形的周長為3+4+5=12,故選B.4、C【解析】
根據(jù)題意表示出△PBQ的面積S與t的關(guān)系式,進而得出答案.【詳解】由題意可得:PB=3﹣t,BQ=2t,則△PBQ的面積S=PB?BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面積S隨出發(fā)時間t的函數(shù)關(guān)系圖象大致是二次函數(shù)圖象,開口向下.故選C.【點睛】此題主要考查了動點問題的函數(shù)圖象,正確得出函數(shù)關(guān)系式是解題關(guān)鍵.5、C【解析】
根據(jù)菱形的性質(zhì):①菱形具有平行四邊形的一切性質(zhì);②菱形的四條邊都相等;③菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角;④菱形是軸對稱圖形,它有2條對稱軸,分別是兩條對角線所在直線.【詳解】解:A、菱形的對角線互相平分,此選項正確;B、菱形的對角線互相垂直,此選項正確;C、菱形的對角線不一定相等,此選項錯誤;D、菱形既是軸對稱圖形又是中心對稱圖形,此選項正確;故選C.考點:菱形的性質(zhì)6、C【解析】
根據(jù)只有符號不同的兩個數(shù)互為相反數(shù)進行解答即可.【詳解】與只有符號不同,所以的相反數(shù)是,故選C.【點睛】本題考查了相反數(shù)的定義,熟練掌握相反數(shù)的定義是解題的關(guān)鍵.7、C【解析】
根據(jù)圖象起始位置猜想點B或F為起點,則可以判斷①正確,④錯誤.結(jié)合圖象判斷3≤t≤4圖象的對稱性可以判斷②正確.結(jié)合圖象易得③正確.【詳解】解:由圖象可知,機器人距離點A1個單位長度,可能在F或B點,則正六邊形邊長為1.故①正確;觀察圖象t在3-4之間時,圖象具有對稱性則可知,機器人在OB或OF上,則當(dāng)t=3時,機器人距離點A距離為1個單位長度,機器人一定位于點O,故②正確;所有點中,只有點D到A距離為2個單位,故③正確;因為機器人可能在F點或B點出發(fā),當(dāng)從B出發(fā)時,不經(jīng)過點E,故④錯誤.故選:C.【點睛】本題為動點問題的函數(shù)圖象探究題,解答時要注意動點到達臨界前后時圖象的變化趨勢.8、B【解析】
陰影部分的面積=三角形的面積-扇形的面積,根據(jù)面積公式計算即可.【詳解】解:由旋轉(zhuǎn)可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故選:B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)與扇形面積的計算,解題的關(guān)鍵是熟練的掌握旋轉(zhuǎn)的性質(zhì)與扇形面積的計算.9、C【解析】分析:要求平均數(shù)只要求出數(shù)據(jù)之和再除以總個數(shù)即可;對于中位數(shù),因圖中是按從小到大的順序排列的,所以只要找出最中間的一個數(shù)(或最中間的兩個數(shù))即可求解.詳解:平均數(shù)=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故這組樣本數(shù)據(jù)的平均數(shù)超過130,A正確,C錯誤;因為表中是按從小到大的順序排列的,一共10名選手,中位數(shù)為第五位和第六位的平均數(shù),故中位數(shù)是(146+148)÷2=147(min),故B正確,D正確.故選C.點睛:本題考查的是平均數(shù)和中位數(shù)的定義.要注意,當(dāng)所給數(shù)據(jù)有單位時,所求得的平均數(shù)和中位數(shù)與原數(shù)據(jù)的單位相同,不要漏單位.10、B【解析】讀圖可知:參加課外活動的人數(shù)共有(15+30+20+35)=100人,其中參加科技活動的有20人,所以參加科技活動的頻率是=0.2,故選B.11、B【解析】【分析】可以利用求根公式求出方程的根,根據(jù)勾股定理求出AB的長,進而求得AD的長,即可發(fā)現(xiàn)結(jié)論.【解答】用求根公式求得:∵∴∴AD的長就是方程的正根.故選B.【點評】考查解一元二次方程已經(jīng)勾股定理等,熟練掌握公式法解一元二次方程是解題的關(guān)鍵.12、D【解析】試題分析:根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加求解求解;根據(jù)積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘求解;根據(jù)完全平方公式求解;根據(jù)合并同類項法則求解.解:A、a3?a2=a3+2=a5,故A錯誤;B、(2a)3=8a3,故B錯誤;C、(a﹣b)2=a2﹣2ab+b2,故C錯誤;D、3a2﹣a2=2a2,故D正確.故選D.點評:本題考查了完全平方公式,合并同類項法則,同底數(shù)冪的乘法,積的乘方的性質(zhì),熟記性質(zhì)與公式并理清指數(shù)的變化是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
解:如圖所示:∵MA′是定值,A′C長度取最小值時,即A′在MC上時,過點M作MF⊥DC于點F,∵在邊長為2的菱形ABCD中,∠A=60°,M為AD中點,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴,∴A′C=MC﹣MA′=.故答案為.【點評】此題主要考查了菱形的性質(zhì)以及銳角三角函數(shù)關(guān)系等知識,得出A′點位置是解題關(guān)鍵.14、【解析】
直線與拋物線有交點,則可化為一元二次方程組利用根的判別式進行計算.【詳解】解:法一:與拋物線有交點則有,整理得解得,對稱軸法二:由題意可知,∵拋物線的頂點為,而∴拋物線y的取值為,則直線y與x軸平行,∴要使直線與拋物線有交點,∴拋物線y的取值為,即為a的取值范圍,∴故答案為:【點睛】考查二次函數(shù)圖象的性質(zhì)及交點的問題,此類問題,通??苫癁橐辉畏匠?,利用根的判別式或根與系數(shù)的關(guān)系進行計算.15、【解析】分析:延長AE交DF于G,再根據(jù)全等三角形的判定得出△AGD與△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根據(jù)勾股定理得出EF的長.詳解:延長AE交DF于G,如圖,∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE.在△AGD和△BAE中,∵,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=.故答案為.點睛:本題考查了正方形的性質(zhì),關(guān)鍵是根據(jù)全等三角形的判定和性質(zhì)得出EG=FG=1,再利用勾股定理計算.16、3【解析】
根據(jù)圓周角定理可求出∠AOB的度數(shù),設(shè)扇形半徑為x,從而列出關(guān)于x的方程,求出答案.【詳解】由題意可知:∠AOB=2∠ACB=2×40°=80°,設(shè)扇形半徑為x,故陰影部分的面積為πx2×=×πx2=2π,故解得:x1=3,x2=-3(不合題意,舍去),故答案為3.【點睛】本題主要考查了圓周角定理以及扇形的面積求解,解本題的要點在于根據(jù)題意列出關(guān)于x的方程,從而得到答案.17、【解析】
連接OA,OC,根據(jù)∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數(shù)即可求得CD的長.【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【點睛】本題考查了圓周角定理以及銳角三角函數(shù),根據(jù)題意作出常用輔助線是解題關(guān)鍵.18、【解析】試題分析:根據(jù)題意可知小羊的最大活動區(qū)域為:半徑為5,圓心角度數(shù)為90°的扇形和半徑為1,圓心角為60°的扇形,則.點睛:本題主要考查的就是扇形的面積計算公式,屬于簡單題型.本題要特別注意的就是在拐角的位置時所構(gòu)成的扇形的圓心角度數(shù)和半徑,能夠畫出圖形是解決這個問題的關(guān)鍵.在求扇形的面積時,我們一定要將圓心角代入進行計算,如果題目中出現(xiàn)的是圓周角,則我們需要求出圓心角的度數(shù),然后再進行計算.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、.【解析】
根據(jù)零指數(shù)冪和特殊角的三角函數(shù)值進行計算【詳解】解:原式=1﹣4×+2﹣=1﹣2+2﹣=【點睛】本題考查了實數(shù)的運算:實數(shù)的運算和在有理數(shù)范圍內(nèi)一樣,值得一提的是,實數(shù)既可以進行加、減、乘、除、乘方運算,又可以進行開方運算,其中正實數(shù)可以開平方.20、(1)見解析;(2)2(3)1【解析】
(1)通過證明∠BED=∠DBE得到DB=DE;
(2)連接CD,如圖,證明△DBC為等腰直角三角形得到BC=BD=4,從而得到△ABC外接圓的半徑;
(3)證明△DBF∽△ADB,然后利用相似比求AD的長.【詳解】(1)證明:∵AD平分∠BAC,BE平分∠ABD,∴∠1=∠2,∠3=∠4,∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,∴DB=DE;(2)解:連接CD,如圖,∵∠BAC=10°,∴BC為直徑,∴∠BDC=10°,∵∠1=∠2,∴DB=BC,∴△DBC為等腰直角三角形,∴BC=BD=4,∴△ABC外接圓的半徑為2;(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,∴△DBF∽△ADB,∴=,即=,∴AD=1.【點睛】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了圓周角定理和相似三角形的判定與性質(zhì).21、(1)y=﹣x+4;(2)1<x<1;(1)2.【解析】
(1)依據(jù)反比例函數(shù)y2=(x>0)的圖象交于A(1,m)、B(n,1)兩點,即可得到A(1,1)、B(1,1),代入一次函數(shù)y1=kx+b,可得直線AB的解析式;(2)當(dāng)1<x<1時,正比例函數(shù)圖象在反比例函數(shù)圖象的上方,即可得到當(dāng)y1>y2時,x的取值范圍是1<x<1;(1)作點A關(guān)于y軸的對稱點C,連接BC交y軸于點P,則PA+PB的最小值等于BC的長,利用勾股定理即可得到BC的長.【詳解】(1)A(1,m)、B(n,1)兩點坐標分別代入反比例函數(shù)y2=(x>0),可得m=1,n=1,∴A(1,1)、B(1,1),把A(1,1)、B(1,1)代入一次函數(shù)y1=kx+b,可得,解得,∴直線AB的解析式為y=-x+4;(2)觀察函數(shù)圖象,發(fā)現(xiàn):當(dāng)1<x<1時,正比例函數(shù)圖象在反比例函數(shù)圖象的上方,∴當(dāng)y1>y2時,x的取值范圍是1<x<1.(1)如圖,作點A關(guān)于y軸的對稱點C,連接BC交y軸于點P,則PA+PB的最小值等于BC的長,過C作y軸的平行線,過B作x軸的平行線,交于點D,則Rt△BCD中,BC=,∴PA+PB的最小值為2.【點睛】本題考查的是反比例函數(shù)與一次函數(shù)的交點問題,根據(jù)函數(shù)圖象的上下位置關(guān)系結(jié)合交點的橫坐標,得出不等式的取值范圍是解答此題的關(guān)鍵.22、(1)詳見解析;(2)OF=.【解析】
(1)連接OC,如圖,根據(jù)切線的性質(zhì)得∠1+∠3=90°,則可證明∠3=∠4,再根據(jù)圓周角定理得到∠ACB=90°,然后根據(jù)等角的余角相等得到∠BDC=∠5,從而根據(jù)等腰三角形的判定定理得到結(jié)論;(2)根據(jù)勾股定理計算出AC=8,再證明△ABC∽△ABD,利用相似比得到AD=,然后證明OF為△ABD的中位線,從而根據(jù)三角形中位線性質(zhì)求出OF的長.【詳解】(1)證明:連接OC,如圖,∵CF為切線,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB為直徑,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)在Rt△ABC中,AC==8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴,即,∴AD=,∵∠3=∠4,∴FC=FB,而FC=FD,∴FD=FB,而BO=AO,∴OF為△ABD的中位線,∴OF=AD=.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了圓周角定理和垂徑定理.23、(1)作圖見解析;(2)證明見解析;【解析】
(1)分別以B、D為圓心,以大于BD的長為半徑四弧交于兩點,過兩點作直線即可得到線段BD的垂直平分線;(2)利用垂直平分線證得△DEO≌△BFO即可證得結(jié)論.【詳解】解:(1)如圖:(2)∵四邊形ABCD為矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分線段BD,∴BO=DO,在△DEO和三角形BFO中,,∴△DEO≌△BFO(ASA),∴DE=BF.考點:1.作圖—基本作圖;2.線段垂直平分線的性質(zhì);3.矩形的性質(zhì).24、(1)證明見解析;(2)AE=.【解析】
(1)連結(jié)AC、AC′,根據(jù)矩形的性質(zhì)得到∠ABC=90°,即AB⊥CC′,根據(jù)旋轉(zhuǎn)的性質(zhì)即可得到結(jié)論;(2)根據(jù)矩形的性質(zhì)得到AD=BC,∠D=∠ABC′=90°,根據(jù)旋轉(zhuǎn)的性質(zhì)得到BC′=AD′,AD=AD′,證得BC′=AD′,根據(jù)全等三角形的性質(zhì)得到BE=D′E,設(shè)AE=x,則D′E=2﹣x,根據(jù)勾股定理列方程即可得到結(jié)論.【詳解】解::(1)連結(jié)AC、AC′,∵四邊形ABCD為矩形,∴∠ABC=90°,即A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年年七年級數(shù)學(xué)人教版下冊專題整合復(fù)習(xí)卷27.3 位似(1)(含答案)-
- 研發(fā)團隊有效管理培訓(xùn)
- 幼兒音樂教育活動的策劃計劃
- 壬二酸行業(yè)相關(guān)投資計劃提議
- 自然觀察小班孩子的環(huán)境教育計劃
- 會計、審計及稅務(wù)服務(wù)相關(guān)行業(yè)投資方案范本
- 制定企業(yè)社會責(zé)任與人事發(fā)展結(jié)合的計劃
- 班級成員角色的明確計劃
- 社區(qū)小型創(chuàng)業(yè)支持的工作方案計劃
- 教育管理制度培訓(xùn)
- 美團合作協(xié)議書范本(2024版)
- 第21課《小圣施威降大圣》課件 2024-2025學(xué)年統(tǒng)編版語文七年級上冊
- AQ/T 2061-2018 金屬非金屬地下礦山防治水安全技術(shù)規(guī)范(正式版)
- 天津市部分區(qū)2022-2023學(xué)年七年級上學(xué)期期末練習(xí)生物試題
- 小學(xué)三年級-安全知識考試試題-(附答案)-
- 醫(yī)院門診醫(yī)生績效考核標準及評分細則
- MOOC 體育保健學(xué)-江西財經(jīng)大學(xué) 中國大學(xué)慕課答案
- 廣東省深圳市羅湖區(qū)2022-2023學(xué)年二年級上學(xué)期數(shù)學(xué)期中復(fù)習(xí)試卷
- 康復(fù)科護理工作總結(jié)及計劃
- 基于VMI的庫存管理
- 建筑工程鋼結(jié)構(gòu)焊接變形的控制措施
評論
0/150
提交評論