2022年四川省資陽市安岳縣中考數(shù)學全真模擬試卷含解析_第1頁
2022年四川省資陽市安岳縣中考數(shù)學全真模擬試卷含解析_第2頁
2022年四川省資陽市安岳縣中考數(shù)學全真模擬試卷含解析_第3頁
2022年四川省資陽市安岳縣中考數(shù)學全真模擬試卷含解析_第4頁
2022年四川省資陽市安岳縣中考數(shù)學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在△ABC中,AB=3,BC=4,AC=2,D,E,F(xiàn)分別為AB,BC,AC中點,連接DF,F(xiàn)E,則四邊形DBEF的周長是(

)A.5 B.7 C.9 D.112.PM2.5是指大氣中直徑小于或等于2.5μm(0.0000025m)的顆粒物,含有大量有毒、有害物質,也稱為可入肺顆粒物,將25微米用科學記數(shù)法可表示為()米.A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×10﹣53.如圖,在圓O中,直徑AB平分弦CD于點E,且CD=4,連接AC,OD,若∠A與∠DOB互余,則EB的長是()A.2 B.4 C. D.24.如圖釣魚竿AC長6m,露在水面上的魚線BC長3m,釣者想看看魚釣上的情況,把魚竿AC逆時針轉動15°到AC′的位置,此時露在水面上的魚線B'C'長度是()A.3m B.m C.m D.4m5.下列計算正確的是()A.a6÷a2=a3 B.(﹣2)﹣1=2C.(﹣3x2)?2x3=﹣6x6 D.(π﹣3)0=16.的相反數(shù)是()A. B.2 C. D.7.如圖,將周長為8的△ABC沿BC方向平移1個單位長度得到,則四邊形的周長為()A.8 B.10 C.12 D.168.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=29.全球芯片制造已經進入10納米到7納米器件的量產時代.中國自主研發(fā)的第一臺7納米刻蝕機,是芯片制造和微觀加工最核心的設備之一,7納米就是0.000000007米.數(shù)據0.000000007用科學記數(shù)法表示為()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣1010.如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條邊DF=50cm,EF=30cm,測得邊DF離地面的高度AC=1.5m,CD=20m,則樹高AB為()A.12m B.13.5m C.15m D.16.5m11.以下各圖中,能確定的是()A. B. C. D.12.小明早上從家騎自行車去上學,先走平路到達點A,再走上坡路到達點B,最后走下坡路到達學校,小明騎自行車所走的路程s(單位:千米)與他所用的時間t(單位:分鐘)的關系如圖所示,放學后,小明沿原路返回,且走平路、上坡路、下坡路的速度分別保持和去上學時一致,下列說法:①小明家距學校4千米;②小明上學所用的時間為12分鐘;③小明上坡的速度是0.5千米/分鐘;④小明放學回家所用時間為15分鐘.其中正確的個數(shù)是()A.1個 B.2個 C.3個 D.4個二、填空題:(本大題共6個小題,每小題4分,共24分.)13.二次函數(shù)y=x2-2x+1的對稱軸方程是x=_______.14.從某玉米種子中抽取6批,在同一條件下進行發(fā)芽試驗,有關數(shù)據如下:種子粒數(shù)100400800100020005000發(fā)芽種子粒數(shù)8531865279316044005發(fā)芽頻率0.8500.7950.8150.7930.8020.801根據以上數(shù)據可以估計,該玉米種子發(fā)芽的概率為___________(精確到0.1).15.不等式組的解集是▲.16.2018年3月2日,大型記錄電影《厲害了,我的國》登陸全國各大院線.某影院針對這一影片推出了特惠活動:票價每人30元,團體購票超過10人,票價可享受八折優(yōu)惠,學校計劃組織全體教師觀看此影片.若觀影人數(shù)為a(a>10),則應付票價總額為_____元.(用含a的式子表示)17.分解因式:(2a+b)2﹣(a+2b)2=.18.如圖,在四邊形中,,,,,,點從點出發(fā)以的速度向點運動,點從點出發(fā)以的速度向點運動,、兩點同時出發(fā),其中一點到達終點時另一點也停止運動.若,當__時,是等腰三角形.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知⊙O的直徑為10,點A,點B,點C在⊙O上,∠CAB的平分線交⊙O于點D.(I)如圖①,若BC為⊙O的直徑,求BD、CD的長;(II)如圖②,若∠CAB=60°,求BD、BC的長.20.(6分)拋物線經過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.求此拋物線的解析式;已知點D在第四象限的拋物線上,求點D關于直線BC對稱的點D’的坐標;在(2)的條件下,連結BD,問在x軸上是否存在點P,使,若存在,請求出P點的坐標;若不存在,請說明理由.21.(6分)已知OA,OB是⊙O的半徑,且OA⊥OB,垂足為O,P是射線OA上的一點(點A除外),直線BP交⊙O于點Q,過Q作⊙O的切線交射線OA于點E.(1)如圖①,點P在線段OA上,若∠OBQ=15°,求∠AQE的大?。唬?)如圖②,點P在OA的延長線上,若∠OBQ=65°,求∠AQE的大小.22.(8分)如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A坐標為(4,0).(1)求該拋物線的解析式;(2)拋物線的頂點為N,在x軸上找一點K,使CK+KN最小,并求出點K的坐標;(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.23.(8分)如圖所示,點C為線段OB的中點,D為線段OA上一點.連結AC、BD交于點P.(問題引入)(1)如圖1,若點P為AC的中點,求的值.溫馨提示:過點C作CE∥AO交BD于點E.(探索研究)(2)如圖2,點D為OA上的任意一點(不與點A、O重合),求證:.(問題解決)(3)如圖2,若AO=BO,AO⊥BO,,求tan∠BPC的值.24.(10分)某超市對今年“元旦”期間銷售A、B、C三種品牌的綠色雞蛋情況進行了統(tǒng)計,并繪制如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖.根據圖中信息解答下列問題:該超市“元旦”期間共銷售個綠色雞蛋,A品牌綠色雞蛋在扇形統(tǒng)計圖中所對應的扇形圓心角是度;補全條形統(tǒng)計圖;如果該超市的另一分店在“元旦”期間共銷售這三種品牌的綠色雞蛋1500個,請你估計這個分店銷售的B種品牌的綠色雞蛋的個數(shù)?25.(10分)我市計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內完成;若由乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙兩隊先合做10天,那么余下的工程由乙隊單獨完成還需5天.這項工程的規(guī)定時間是多少天?已知甲隊每天的施工費用為6500元,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙兩隊合做來完成.則該工程施工費用是多少?26.(12分)如圖,已知,請用尺規(guī)過點作一條直線,使其將分成面積比為兩部分.(保留作圖痕跡,不寫作法)27.(12分)如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標為(-3,0).(1)求點B的坐標;(2)已知,C為拋物線與y軸的交點.①若點P在拋物線上,且,求點P的坐標;②設點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題解析:∵D、E、F分別為AB、BC、AC中點,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四邊形DBEF為平行四邊形,∴四邊形DBEF的周長=2(DF+EF)=2×(2+)=1.故選B.2、B【解析】

由科學計數(shù)法的概念表示出0.0000025即可.【詳解】0.0000025=2.5×10﹣6.故選B.【點睛】本題主要考查科學計數(shù)法,熟記相關概念是解題關鍵.3、D【解析】

連接CO,由直徑AB平分弦CD及垂徑定理知∠COB=∠DOB,則∠A與∠COB互余,由圓周角定理知∠A=30°,∠COE=60°,則∠OCE=30°,設OE=x,則CO=2x,利用勾股定理即可求出x,再求出BE即可.【詳解】連接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=2∵∠A與∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,設OE=x,則CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故選D.【點睛】此題主要考查圓內的綜合問題,解題的關鍵是熟知垂徑定理、圓周角定理及勾股定理.4、B【解析】

因為三角形ABC和三角形AB′C′均為直角三角形,且BC、B′C′都是我們所要求角的對邊,所以根據正弦來解題,求出∠CAB,進而得出∠C′AB′的度數(shù),然后可以求出魚線B'C'長度.【詳解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故選:B.【點睛】此題主要考查了解直角三角形的應用,解本題的關鍵是把實際問題轉化為數(shù)學問題.5、D【解析】解:A.a6÷a2=a4,故A錯誤;B.(﹣2)﹣1=﹣,故B錯誤;C.(﹣3x2)?2x3=﹣6x5,故C錯;D.(π﹣3)0=1,故D正確.故選D.6、D【解析】

因為-+=0,所以-的相反數(shù)是.故選D.7、B【解析】根據平移的基本性質,得出四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根據題意,將周長為8個單位的△ABC沿邊BC向右平移1個單位得到△DEF,

∴AD=1,BF=BC+CF=BC+1,DF=AC;

又∵AB+BC+AC=8,

∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.

故選C.“點睛”本題考查平移的基本性質:①平移不改變圖形的形狀和大??;②經過平移,對應點所連的線段平行且相等,對應線段平行且相等,對應角相等.得到CF=AD,DF=AC是解題的關鍵.8、B【解析】

根據拋物線的對稱軸公式:計算即可.【詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.【點睛】此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關鍵.9、C【解析】

本題根據科學記數(shù)法進行計算.【詳解】因為科學記數(shù)法的標準形式為a×(1≤|a|≤10且n為整數(shù)),因此0.000000007用科學記數(shù)法法可表示為7×,故選C.【點睛】本題主要考察了科學記數(shù)法,熟練掌握科學記數(shù)法是本題解題的關鍵.10、D【解析】

利用直角三角形DEF和直角三角形BCD相似求得BC的長后加上小明同學的身高即可求得樹高AB.【詳解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案為16.5m.【點睛】本題考查了相似三角形的應用,解題的關鍵是從實際問題中整理出相似三角形的模型.11、C【解析】

逐一對選項進行分析即可得出答案.【詳解】A中,利用三角形外角的性質可知,故該選項錯誤;B中,不能確定的大小關系,故該選項錯誤;C中,因為同弧所對的圓周角相等,所以,故該選項正確;D中,兩直線不平行,所以,故該選項錯誤.故選:C.【點睛】本題主要考查平行線的性質及圓周角定理的推論,掌握圓周角定理的推論是解題的關鍵.12、C【解析】

從開始到A是平路,是1千米,用了3分鐘,則從學校到家門口走平路仍用3分鐘,根據圖象求得上坡(AB段)、下坡(B到學校段)的路程與速度,利用路程除以速度求得每段所用的時間,相加即可求解.【詳解】解:①小明家距學校4千米,正確;②小明上學所用的時間為12分鐘,正確;③小明上坡的速度是千米/分鐘,錯誤;④小明放學回家所用時間為3+2+10=15分鐘,正確;故選:C.【點睛】本題考查利用函數(shù)的圖象解決實際問題,正確理解函數(shù)圖象橫縱坐標表示的意義,理解問題的過程,就能夠通過圖象得到函數(shù)問題的相應解決.需注意計算單位的統(tǒng)一.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

利用公式法可求二次函數(shù)y=x2-2x+1的對稱軸.也可用配方法.【詳解】∵-=-=1,∴x=1.故答案為:1【點睛】本題考查二次函數(shù)基本性質中的對稱軸公式;也可用配方法解決.14、1.2【解析】

仔細觀察表格,發(fā)現(xiàn)大量重復試驗發(fā)芽的頻率逐漸穩(wěn)定在1.2左右,從而得到結論.【詳解】∵觀察表格,發(fā)現(xiàn)大量重復試驗發(fā)芽的頻率逐漸穩(wěn)定在1.2左右,∴該玉米種子發(fā)芽的概率為1.2,故答案為1.2.【點睛】考查利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.15、﹣1<x≤1【解析】解一元一次不等式組.【分析】解一元一次不等式組,先求出不等式組中每一個不等式的解集,再利用口訣求出這些解集的公共部分:同大取大,同小取小,大小小大中間找,大大小小解不了(無解).因此,解第一個不等式得,x>﹣1,解第二個不等式得,x≤1,∴不等式組的解集是﹣1<x≤1.16、24a【解析】

根據題意列出代數(shù)式即可.【詳解】根據題意得:30a×0.8=24a,

則應付票價總額為24a元,

故答案為24a.【點睛】考查了列代數(shù)式,弄清題意是解本題的關鍵.17、3(a+b)(a﹣b).【解析】(2a+b)2﹣(a+2b)2=4a2+4ab+b2-(a2+4ab+4b2)=4a2+4ab+b2-a2-4ab-4b2=3a2-3b2=3(a2-b2)=3(a+b)(a-b)18、或.【解析】

根據題意,用時間t表示出DQ和PC,然后根據等腰三角形腰的情況分類討論,①當時,畫出對應的圖形,可知點在的垂直平分線上,QE=,AE=BP,列出方程即可求出t;②當時,過點作于,根據勾股定理求出PQ,然后列出方程即可求出t.【詳解】解:由運動知,,,,,,,是等腰三角形,且,①當時,過點P作PE⊥AD于點E點在的垂直平分線上,QE=,AE=BP,,,②當時,如圖,過點作于,,,,,四邊形是矩形,,,,在中,,,,點在邊上,不和重合,,,此種情況符合題意,即或時,是等腰三角形.故答案為:或.【點睛】此題考查的是等腰三角形的定義和動點問題,掌握等腰三角形的定義和分類討論的數(shù)學思想是解決此題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)BD=CD=5;(2)BD=5,BC=5.【解析】

(1)利用圓周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解決問題;(2)如圖②,連接OB,OD.由圓周角定理、角平分線的性質以及等邊三角形的判定推知△OBD是等邊三角形,則BD=OB=OD=5,再根據垂徑定理求出BE即可解決問題.【詳解】(1)∵BC是⊙O的直徑,∴∠CAB=∠BDC=90°.∵AD平分∠CAB,∴,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴BD=CD=5,(2)如圖②,連接OB,OD,OC,∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等邊三角形,∴BD=OB=OD.∵⊙O的直徑為10,則OB=5,∴BD=5,∵AD平分∠CAB,∴,∴OD⊥BC,設垂足為E,∴BE=EC=OB?sin60°=,∴BC=5.【點睛】本題考查圓周角定理,垂徑定理,解直角三角形等知識,解題的關鍵是學會添加常用輔助線,屬于中考常考題型.20、(1)(2)(0,-1)(3)(1,0)(9,0)【解析】

(1)將A(?1,0)、C(0,?3)兩點坐標代入拋物線y=ax2+bx?3a中,列方程組求a、b的值即可;(2)將點D(m,?m?1)代入(1)中的拋物線解析式,求m的值,再根據對稱性求點D關于直線BC對稱的點D'的坐標;(3)分兩種情形①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,②連接BD′,過點C作CP′∥BD′,交x軸于P′,分別求出直線CP和直線CP′的解析式即可解決問題.【詳解】解:(1)將A(?1,0)、C(0,?3)代入拋物線y=ax2+bx?3a中,得,解得∴y=x2?2x?3;(2)將點D(m,?m?1)代入y=x2?2x?3中,得m2?2m?3=?m?1,解得m=2或?1,∵點D(m,?m?1)在第四象限,∴D(2,?3),∵直線BC解析式為y=x?3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3?2=1,∴點D關于直線BC對稱的點D'(0,?1);(3)存在.滿足條件的點P有兩個.①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,∵直線BD解析式為y=3x?9,∵直線CP過點C,∴直線CP的解析式為y=3x?3,∴點P坐標(1,0),②連接BD′,過點C作CP′∥BD′,交x軸于P′,∴∠P′CB=∠D′BC,根據對稱性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直線BD′的解析式為∵直線CP′過點C,∴直線CP′解析式為,∴P′坐標為(9,0),綜上所述,滿足條件的點P坐標為(1,0)或(9,0).【點睛】本題考查了二次函數(shù)的綜合運用.關鍵是由已知條件求拋物線解析式,根據拋物線的對稱性,直線BC的特殊性求點的坐標,學會分類討論,不能漏解.21、(1)30°;(2)20°;【解析】

(1)利用圓切線的性質求解;(2)連接OQ,利用圓的切線性質及角之間的關系求解。【詳解】(1)如圖①中,連接OQ.∵EQ是切線,∴OQ⊥EQ,∴∠OQE=90°,∵OA⊥OB,∴∠AOB=90°,∴∠AQB=∠AOB=45°,∵OB=OQ,∴∠OBQ=∠OQB=15°,∴∠AQE=90°﹣15°﹣45°=30°.(2)如圖②中,連接OQ.∵OB=OQ,∴∠B=∠OQB=65°,∴∠BOQ=50°,∵∠AOB=90°,∴∠AOQ=40°,∵OQ=OA,∴∠OQA=∠OAQ=70°,∵EQ是切線,∴∠OQE=90°,∴∠AQE=90°﹣70°=20°.【點睛】此題主要考查圓的切線的性質及圓中集合問題的綜合運等.22、(1)y=﹣;(1)點K的坐標為(,0);(2)點P的坐標為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).【解析】試題分析:(1)把A、C兩點坐標代入拋物線解析式可求得a、c的值,可求得拋物線解析;(1)可求得點C關于x軸的對稱點C′的坐標,連接C′N交x軸于點K,再求得直線C′K的解析式,可求得K點坐標;(2)過點E作EG⊥x軸于點G,設Q(m,0),可表示出AB、BQ,再證明△BQE≌△BAC,可表示出EG,可得出△CQE關于m的解析式,再根據二次函數(shù)的性質可求得Q點的坐標;(4)分DO=DF、FO=FD和OD=OF三種情況,分別根據等腰三角形的性質求得F點的坐標,進一步求得P點坐標即可.試題解析:(1)∵拋物線經過點C(0,4),A(4,0),∴,解得,∴拋物線解析式為y=﹣x1+x+4;(1)由(1)可求得拋物線頂點為N(1,),如圖1,作點C關于x軸的對稱點C′(0,﹣4),連接C′N交x軸于點K,則K點即為所求,設直線C′N的解析式為y=kx+b,把C′、N點坐標代入可得,解得,∴直線C′N的解析式為y=x-4,令y=0,解得x=,∴點K的坐標為(,0);(2)設點Q(m,0),過點E作EG⊥x軸于點G,如圖1,由﹣x1+x+4=0,得x1=﹣1,x1=4,∴點B的坐標為(﹣1,0),AB=6,BQ=m+1,又∵QE∥AC,∴△BQE≌△BAC,∴,即,解得EG=;∴S△CQE=S△CBQ﹣S△EBQ=(CO-EG)·BQ=(m+1)(4-)==-(m-1)1+2.又∵﹣1≤m≤4,∴當m=1時,S△CQE有最大值2,此時Q(1,0);(4)存在.在△ODF中,(?。┤鬌O=DF,∵A(4,0),D(1,0),∴AD=OD=DF=1.又在Rt△AOC中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此時,點F的坐標為(1,1).由﹣x1+x+4=1,得x1=1+,x1=1﹣.此時,點P的坐標為:P1(1+,1)或P1(1﹣,1);(ⅱ)若FO=FD,過點F作FM⊥x軸于點M.由等腰三角形的性質得:OM=OD=1,∴AM=2.∴在等腰直角△AMF中,MF=AM=2.∴F(1,2).由﹣x1+x+4=2,得x1=1+,x1=1﹣.此時,點P的坐標為:P2(1+,2)或P4(1﹣,2);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°.∴AC=4.∴點O到AC的距離為1.而OF=OD=1<1,與OF≥1矛盾.∴在AC上不存在點使得OF=OD=1.此時,不存在這樣的直線l,使得△ODF是等腰三角形.綜上所述,存在這樣的直線l,使得△ODF是等腰三角形.所求點P的坐標為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).點睛:本題是二次函數(shù)綜合題,主要考查待定系數(shù)法、三角形全等的判定與性質、等腰三角形的性質等,能正確地利用數(shù)形結合思想、分類討論思想等進行解題是關鍵.23、(1);(2)見解析;(3)【解析】

(1)過點C作CE∥OA交BD于點E,即可得△BCE∽△BOD,根據相似三角形的性質可得,再證明△ECP≌△DAP,由此即可求得的值;(2)過點D作DF∥BO交AC于點F,即可得,,由點C為OB的中點可得BC=OC,即可證得;(3)由(2)可知=,設AD=t,則BO=AO=4t,OD=3t,根據勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,從而得∠A=∠APD=∠BPC,所以tan∠BPC=tan∠A=.【詳解】(1)如圖1,過點C作CE∥OA交BD于點E,∴△BCE∽△BOD,∴=,又BC=BO,∴CE=DO.∵CE∥OA,∴∠ECP=∠DAP,又∠EPC=∠DPA,PA=PC,∴△ECP≌△DAP,∴AD=CE=DO,即=;(2)如圖2,過點D作DF∥BO交AC于點F,則=,=.∵點C為OB的中點,∴BC=OC,∴=;(3)如圖2,∵=,由(2)可知==.設AD=t,則BO=AO=4t,OD=3t,∵AO⊥BO,即∠AOB=90°,∴BD==5t,∴PD=t,PB=4t,∴PD=AD,∴∠A=∠APD=∠BPC,則tan∠BPC=tan∠A==.【點睛】本題考查了相似三角形的判定與性質,準確作出輔助線,構造相似三角形是解決本題的關鍵,也是求解的難點.24、(1)2400,60;(2)見解析;(3)500【解析】整體分析:(1)由C品牌1200個占總數(shù)的50%可得雞蛋的數(shù)量,用A品牌占總數(shù)的百分比乘以360°即可;(2)計算出B品牌的數(shù)量;(3)用B品牌與總數(shù)的比乘以1500.解:(1)共銷售綠色雞蛋:1200÷50%=2400個,A品牌所占的圓心角:×360°=60°;故答案為2400,60;(2)B品牌雞蛋的數(shù)量為:2400﹣400﹣1200=800個,補全統(tǒng)計圖如圖:(3)分店銷售的B種品牌的綠色雞蛋為:×1500=500個.25、(1)這項

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論