內(nèi)蒙古烏蘭察布市化德縣重點達(dá)標(biāo)名校2022年中考數(shù)學(xué)全真模擬試題含解析_第1頁
內(nèi)蒙古烏蘭察布市化德縣重點達(dá)標(biāo)名校2022年中考數(shù)學(xué)全真模擬試題含解析_第2頁
內(nèi)蒙古烏蘭察布市化德縣重點達(dá)標(biāo)名校2022年中考數(shù)學(xué)全真模擬試題含解析_第3頁
內(nèi)蒙古烏蘭察布市化德縣重點達(dá)標(biāo)名校2022年中考數(shù)學(xué)全真模擬試題含解析_第4頁
內(nèi)蒙古烏蘭察布市化德縣重點達(dá)標(biāo)名校2022年中考數(shù)學(xué)全真模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.在體育課上,甲,乙兩名同學(xué)分別進(jìn)行了5次跳遠(yuǎn)測試,經(jīng)計算他們的平均成績相同.若要比較這兩名同學(xué)的成績哪一個更為穩(wěn)定,通常需要比較他們成績的()A.眾數(shù) B.平均數(shù) C.中位數(shù) D.方差2.如圖,若a∥b,∠1=60°,則∠2的度數(shù)為()A.40° B.60° C.120° D.150°3.已知點M(-2,3)在雙曲線上,則下列一定在該雙曲線上的是()A.(3,-2) B.(-2,-3) C.(2,3) D.(3,2)4.如圖,函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,點C在第一象限,AC⊥AB,且AC=AB,則點C的坐標(biāo)為()A.(2,1) B.(1,2) C.(1,3) D.(3,1)5.下列運算正確的是()A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-36.下列運算正確的是()A.2a﹣a=1B.2a+b=2abC.(a4)3=a7D.(﹣a)2?(﹣a)3=﹣a57.據(jù)統(tǒng)計,某住宅樓30戶居民五月份最后一周每天實行垃圾分類的戶數(shù)依次是:27,30,29,25,26,28,29,那么這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.25和30 B.25和29 C.28和30 D.28和298.某班7名女生的體重(單位:kg)分別是35、37、38、40、42、42、74,這組數(shù)據(jù)的眾數(shù)是()A.74 B.44 C.42 D.409.關(guān)于反比例函數(shù)y=,下列說法中錯誤的是()A.它的圖象是雙曲線B.它的圖象在第一、三象限C.y的值隨x的值增大而減小D.若點(a,b)在它的圖象上,則點(b,a)也在它的圖象上10.若關(guān)于x的一元二次方程x(x+2)=m總有兩個不相等的實數(shù)根,則()A.m<﹣1 B.m>1 C.m>﹣1 D.m<1二、填空題(本大題共6個小題,每小題3分,共18分)11.在一次射擊訓(xùn)練中,某位選手五次射擊的環(huán)數(shù)分別為5,8,7,6,1.則這位選手五次射擊環(huán)數(shù)的方差為.12.若二次根式有意義,則x的取值范圍為__________.13.某招聘考試分筆試和面試兩種,其中筆試按60%、面試按40%計算加權(quán)平均數(shù),作為總成績.孔明筆試成績90分,面試成績85分,那么孔明的總成績是分.14.如圖,矩形ABCD的邊AB在x軸上,AB的中點與原點O重合,AB=2,AD=1,點E的坐標(biāo)為(0,2).點F(x,0)在邊AB上運動,若過點E、F的直線將矩形ABCD的周長分成2:1兩部分,則x的值為__.15.寫出一個平面直角坐標(biāo)系中第三象限內(nèi)點的坐標(biāo):(__________)16.因式分解:a3b﹣ab3=_____.三、解答題(共8題,共72分)17.(8分)矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.(1)如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.①求證:△OCP∽△PDA;②若△OCP與△PDA的面積比為1:4,求邊AB的長.(2)如圖2,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P、A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.18.(8分)漳州市某中學(xué)對全校學(xué)生進(jìn)行文明禮儀知識測試,為了解測試結(jié)果,隨機抽取部分學(xué)生的成績進(jìn)行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:請將以上兩幅統(tǒng)計圖補充完整;若“一般”和“優(yōu)秀”均被視為達(dá)標(biāo)成績,則該校被抽取的學(xué)生中有_▲人達(dá)標(biāo);若該校學(xué)生有1200人,請你估計此次測試中,全校達(dá)標(biāo)的學(xué)生有多少人?19.(8分)(1)觀察猜想如圖①點B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關(guān)系為______;(2)問題解決如圖②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC為直角邊向外作等腰Rt△DAC,連結(jié)BD,求BD的長;(3)拓展延伸如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,請直接寫出BD的長.20.(8分)已知:二次函數(shù)圖象的頂點坐標(biāo)是(3,5),且拋物線經(jīng)過點A(1,3).(1)求此拋物線的表達(dá)式;(2)如果點A關(guān)于該拋物線對稱軸的對稱點是B點,且拋物線與y軸的交點是C點,求△ABC的面積.21.(8分)如圖,拋物線經(jīng)過點A(﹣2,0),點B(0,4).(1)求這條拋物線的表達(dá)式;(2)P是拋物線對稱軸上的點,聯(lián)結(jié)AB、PB,如果∠PBO=∠BAO,求點P的坐標(biāo);(3)將拋物線沿y軸向下平移m個單位,所得新拋物線與y軸交于點D,過點D作DE∥x軸交新拋物線于點E,射線EO交新拋物線于點F,如果EO=2OF,求m的值.22.(10分)如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=17.2米,設(shè)太陽光線與水平地面的夾角為α,當(dāng)α=60°時,測得樓房在地面上的影長AE=10米,現(xiàn)有一老人坐在MN這層臺階上曬太陽.(取1.73)(1)求樓房的高度約為多少米?(2)過了一會兒,當(dāng)α=45°時,問老人能否還曬到太陽?請說明理由.23.(12分)如圖,AB是⊙O的一條弦,E是AB的中點,過點E作EC⊥OA于點C,過點B作⊙O的切線交CE的延長線于點D.(1)求證:DB=DE;(2)若AB=12,BD=5,求⊙O的半徑.24.解不等式:﹣≤1

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則各數(shù)據(jù)與其平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則各數(shù)據(jù)與其平均值的離散程度越小,穩(wěn)定性越好?!驹斀狻坑捎诜讲钅芊从硵?shù)據(jù)的穩(wěn)定性,需要比較這兩名學(xué)生立定跳遠(yuǎn)成績的方差.故選D.2、C【解析】如圖:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故選C.點睛:本題考查了平行線的性質(zhì),對頂角相等的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.平行線的性質(zhì)定理:兩直線平行,同位角相等,內(nèi)錯角相等,同旁內(nèi)角互補,兩條平行線之間的距離處處相等.3、A【解析】因為點M(-2,3)在雙曲線上,所以xy=(-2)×3=-6,四個答案中只有A符合條件.故選A4、D【解析】

過點C作CD⊥x軸與D,如圖,先利用一次函數(shù)圖像上點的坐標(biāo)特征確定B(0,2),A(1,0),再證明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,則C點坐標(biāo)可求.【詳解】如圖,過點C作CD⊥x軸與D.∵函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,∴當(dāng)x=0時,y=2,則B(0,2);當(dāng)y=0時,x=1,則A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【點睛】本題主要考查一次函數(shù)的基本概念。角角邊定理、全等三角形的性質(zhì)以及一次函數(shù)的應(yīng)用,熟練掌握相關(guān)知識點是解答的關(guān)鍵.5、D【解析】試題分析:A、原式=a6,錯誤;B、原式=a2﹣2ab+b2,錯誤;C、原式不能合并,錯誤;D、原式=﹣3,正確,故選D考點:完全平方公式;合并同類項;同底數(shù)冪的乘法;平方差公式.6、D【解析】【分析】根據(jù)合并同類項,冪的乘方,同底數(shù)冪的乘法的計算法則解答.【詳解】A、2a﹣a=a,故本選項錯誤;B、2a與b不是同類項,不能合并,故本選項錯誤;C、(a4)3=a12,故本選項錯誤;D、(﹣a)2?(﹣a)3=﹣a5,故本選項正確,故選D.【點睛】本題考查了合并同類項、冪的乘方、同底數(shù)冪的乘法,熟練掌握各運算的運算法則是解題的關(guān)鍵.7、D【解析】【分析】根據(jù)中位數(shù)和眾數(shù)的定義進(jìn)行求解即可得答案.【詳解】對這組數(shù)據(jù)重新排列順序得,25,26,27,28,29,29,30,處于最中間是數(shù)是28,∴這組數(shù)據(jù)的中位數(shù)是28,在這組數(shù)據(jù)中,29出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)是29,故選D.【點睛】本題考查了中位數(shù)和眾數(shù)的概念,熟練掌握眾數(shù)和中位數(shù)的概念是解題的關(guān)鍵.一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù),一組數(shù)據(jù)按從小到大(或從大到小)排序后,位于最中間的數(shù)(或中間兩數(shù)的平均數(shù))是這組數(shù)據(jù)的中位數(shù).8、C【解析】試題分析:眾數(shù)是這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),在這組數(shù)據(jù)中42出現(xiàn)次數(shù)最多,故選C.考點:眾數(shù).9、C【解析】

根據(jù)反比例函數(shù)y=的圖象上點的坐標(biāo)特征,以及該函數(shù)的圖象的性質(zhì)進(jìn)行分析、解答.【詳解】A.反比例函數(shù)的圖像是雙曲線,正確;B.k=2>0,圖象位于一、三象限,正確;C.在每一象限內(nèi),y的值隨x的增大而減小,錯誤;D.∵ab=ba,∴若點(a,b)在它的圖像上,則點(b,a)也在它的圖像上,故正確.故選C.【點睛】本題主要考查反比例函數(shù)的性質(zhì).注意:反比例函數(shù)的增減性只指在同一象限內(nèi).10、C【解析】

將關(guān)于x的一元二次方程化成標(biāo)準(zhǔn)形式,然后利用Δ>0,即得m的取值范圍.【詳解】因為方程是關(guān)于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故選D.【點睛】本題熟練掌握一元二次方程的基本概念是本題的解題關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、2.【解析】試題分析:五次射擊的平均成績?yōu)?(5+7+8+6+1)=7,方差S2=[(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(1﹣7)2]=2.考點:方差.12、x≥﹣.【解析】

考點:二次根式有意義的條件.根據(jù)二次根式的意義,被開方數(shù)是非負(fù)數(shù)求解.解:根據(jù)題意得:1+2x≥0,解得x≥-.故答案為x≥-.13、88【解析】試題分析:根據(jù)筆試和面試所占的百分比以及筆試成績和面試成績,列出算式,進(jìn)行計算即可:∵筆試按60%、面試按40%計算,∴總成績是:90×60%+85×40%=88(分).14、或﹣.【解析】

試題分析:當(dāng)點F在OB上時,設(shè)EF交CD于點P,可求點P的坐標(biāo)為(,1).則AF+AD+DP=3+x,CP+BC+BF=3﹣x,由題意可得:3+x=2(3﹣x),解得:x=.由對稱性可求當(dāng)點F在OA上時,x=﹣,故滿足題意的x的值為或﹣.故答案是或﹣.【點睛】考點:動點問題.15、答案不唯一,如:(﹣1,﹣1),橫坐標(biāo)和縱坐標(biāo)都是負(fù)數(shù)即可.【解析】

讓橫坐標(biāo)、縱坐標(biāo)為負(fù)數(shù)即可.【詳解】在第三象限內(nèi)點的坐標(biāo)為:(﹣1,﹣1)(答案不唯一).故答案為答案不唯一,如:(﹣1,﹣1),橫坐標(biāo)和縱坐標(biāo)都是負(fù)數(shù)即可.16、ab(a+b)(a﹣b)【解析】

先提取公因式ab,然后再利用平方差公式分解即可.【詳解】a3b﹣ab3=ab(a2﹣b2)=ab(a+b)(a﹣b),故答案為ab(a+b)(a﹣b).【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關(guān)鍵.分解因式的步驟一般為:一提(公因式),二套(公式),三徹底.三、解答題(共8題,共72分)17、(1)①證明見解析;②10;(2)線段EF的長度不變,它的長度為25..【解析】試題分析:(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=12(2)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=12PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=12QB,再求出EF=12試題解析:(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴OPPA=CPDA=14(2)作MQ∥AN,交PB于點Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵M(jìn)P=MQ,ME⊥PQ,∴EQ=12PQ.∵M(jìn)Q∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=12QB,∴EF=EQ+QF=12PQ+12QB=12PB,由(1)中的結(jié)論可得:PC=4,BC=8,∠C=90°,∴PB=82+42考點:翻折變換(折疊問題);矩形的性質(zhì);相似形綜合題.18、(1)見解析;(2)1;(3)估計全校達(dá)標(biāo)的學(xué)生有10人【解析】

(1)成績一般的學(xué)生占的百分比=1-成績優(yōu)秀的百分比-成績不合格的百分比,測試的學(xué)生總數(shù)=不合格的人數(shù)÷不合格人數(shù)的百分比,繼而求出成績優(yōu)秀的人數(shù).(2)將成績一般和優(yōu)秀的人數(shù)相加即可;(3)該校學(xué)生文明禮儀知識測試中成績達(dá)標(biāo)的人數(shù)=1200×成績達(dá)標(biāo)的學(xué)生所占的百分比.【詳解】解:(1)成績一般的學(xué)生占的百分比=1﹣20%﹣50%=30%,測試的學(xué)生總數(shù)=24÷20%=120人,成績優(yōu)秀的人數(shù)=120×50%=60人,所補充圖形如下所示:(2)該校被抽取的學(xué)生中達(dá)標(biāo)的人數(shù)=36+60=1.(3)1200×(50%+30%)=10(人).答:估計全校達(dá)標(biāo)的學(xué)生有10人.19、(1)BC=BD+CE,(2);(3).【解析】

(1)證明△ADB≌△EAC,根據(jù)全等三角形的性質(zhì)得到BD=AC,EC=AB,即可得到BC、BD、CE之間的數(shù)量關(guān)系;(2)過D作DE⊥AB,交BA的延長線于E,證明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,根據(jù)勾股定理即可得到BD的長;(3)過D作DE⊥BC于E,作DF⊥AB于F,證明△CED≌△AFD,根據(jù)全等三角形的性質(zhì)得到CE=AF,ED=DF,設(shè)AF=x,DF=y,根據(jù)CB=4,AB=2,列出方程組,求出的值,根據(jù)勾股定理即可求出BD的長.【詳解】解:(1)觀察猜想結(jié)論:BC=BD+CE,理由是:如圖①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)問題解決如圖②,過D作DE⊥AB,交BA的延長線于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:(3)拓展延伸如圖③,過D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,設(shè)AF=x,DF=y,則,解得:∴BF=2+1=3,DF=3,由勾股定理得:【點睛】考查全等三角形的判定與性質(zhì),勾股定理,二元一次方程組的應(yīng)用,熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.20、(1)y=-(x-3)2+5(2)5【解析】

(1)設(shè)頂點式y(tǒng)=a(x-3)2+5,然后把A點坐標(biāo)代入求出a即可得到拋物線的解析式;

(2)利用拋物線的對稱性得到B(5,3),再確定出C點坐標(biāo),然后根據(jù)三角形面積公式求解.【詳解】(1)設(shè)此拋物線的表達(dá)式為y=a(x-3)2+5,將點A(1,3)的坐標(biāo)代入上式,得3=a(1-3)2+5,解得∴此拋物線的表達(dá)式為(2)∵A(1,3),拋物線的對稱軸為直線x=3,∴B(5,3).令x=0,則∴△ABC的面積【點睛】考查待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的性質(zhì),二次函數(shù)圖象上點的坐標(biāo)特征,掌握待定系數(shù)法求二次函數(shù)的解析式是解題的關(guān)鍵.21、(1);(2)P(1,);(3)3或5.【解析】

(1)將點A、B代入拋物線,用待定系數(shù)法求出解析式.(2)對稱軸為直線x=1,過點P作PG⊥y軸,垂足為G,由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐標(biāo).(3)新拋物線的表達(dá)式為,由題意可得DE=2,過點F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情況討論點D在y軸的正半軸上和在y軸的負(fù)半軸上,可求得m的值為3或5.【詳解】解:(1)∵拋物線經(jīng)過點A(﹣2,0),點B(0,4)∴,解得,∴拋物線解析式為,(2),∴對稱軸為直線x=1,過點P作PG⊥y軸,垂足為G,∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,∴,∴,∴,,∴P(1,),(3)設(shè)新拋物線的表達(dá)式為則,,DE=2過點F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF∴,∴FH=1.點D在y軸的正半軸上,則,∴,∴,∴m=3,點D在y軸的負(fù)半軸上,則,∴,∴,∴m=5,∴綜上所述m的值為3或5.【點睛】本題是二次函數(shù)和相似三角形的綜合題目,整體難度不大,但是非常巧妙,學(xué)會靈活運用是關(guān)鍵.22、(1)樓房的高度約為17.3米;(2)當(dāng)α=45°時,老人仍可以曬到太陽.理由見解析.【解析】試題分析:(1)在Rt△ABE中,根據(jù)的正切值即可求得樓高;(2)當(dāng)時,從點B射下的光線與地面AD的交點為F,與MC的交點為點H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論