版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
March2023
GenerativeAI:
Perspectivesfrom
StanfordHAI
HowdoyouthinkgenerativeAIwillaffectyourfieldandsocietygoingforward?
1
TableofContents
3
4
Introduction
6
UpendingHealthcare,fromPatientCaretoBilling,CurtLanglotz
AI’sGreatInflectionPoint,Fei-FeiLi
ThePotentialsofSyntheticPatients,RussAltman
7
8
10
PoetryWillNotOptimize:CreativityintheAgeofAI,MicheleElam
13
TheNewCambrianEra:‘ScientificExcitement,Anxiety’,PercyLiang15
ACalltoAugment–NotAutomate–Workers,ErikBrynjolfsson
AnAIWindowintoNature,SuryaGanguli
TheNewToolsofDailyLife,JamesLanday
11
GenerativeAIandtheRuleofLaw,DanielE.Ho
16
18
TheReinventionofWork,ChristopherD.Manning
InEducation,a‘DisasterintheMaking’,RobReich20
SolvingInequalitiesintheEducationSystem,PeterNorvig21
Introduction:
ThecurrentwaveofgenerativeAIisasubsetofartificialintelligencethat,
basedonatextualprompt,generatesnovelcontent.ChatGPTmightwrite
anessay,Midjourneycouldcreatebeautifulillustrations,orMusicLMcould
composeajingle.MostmoderngenerativeAIispoweredby
foundation
models
,orAImodelstrainedonbroaddatausingself-supervisionatscale,
thenadaptedtoawiderangeofdownstreamtasks.
Theopportunitiesthesemodelspresentforourlives,ourcommunities,and
oursocietyarevast,asaretheriskstheypose.Whileontheonehand,they
mayseamlesslycomplementhumanlabor,makingusmoreproductiveand
creative,ontheother,theycouldamplifythebiaswealreadyexperienceor
undermineourtrustofinformation.
Webelievethatinterdisciplinarycollaborationisessentialinensuringthese
technologiesbenefitusall.ThefollowingareperspectivesfromStanford
leadersinmedicine,science,engineering,humanities,andthesocialsciences
onhowgenerativeAImightaffecttheirfieldsandourworld.Somestudy
theimpactoftechnologyonsociety,othersstudyhowtobestapplythese
technologiestoadvancetheirfield,andothershavedevelopedthetechnical
principlesofthealgorithmsthatunderliefoundationmodels.
3
4
AI’sGreatInflectionPoint
Fei-FeiLi,SequoiaCapitalProfessorintheComputerScienceDepartment;DenningCo-DirectorofStanfordHAI
540millionyearsago,thenumberofanimalspeciesexplodedinaveryshorttimeperiod.Therearemanytheoriesastowhathappened,butonehascapturedmyattention:thesuddenonsetandensuingevolutionofvision.Today,visualperceptionisamajorsensorysystemandthehumanmindcanrecognizepatternsintheworldandgeneratemodelsorconceptsbasedonthesepatterns.Endowingmachineswiththesecapabilities,generativecapabilities,hasbeenadreamformanygenerationsofAIscientists.Thereisalonghistoryofalgorithmicattemptsatgenerativemodelswithvaryingdegreesofprogress.In1966,researchersatMITdevelopedthe“SummerVisionProject”toeffectivelyconstruct“asignificantpartofthevisualsystem”withtechnology.Thiswasthebeginningofthefieldofcomputervisionandimagegeneration.
Recently,duetotheprofoundandinterconnectedconceptsofdeeplearningandlargedata,weseemtohavereachedaninflectionpointintheabilityofmachinestogeneratelanguage,image,audio,andmore.WhilebuildingAItoseewhathumanscanseewastheinspirationforcomputervision,weshouldnowbelookingbeyondthistobuildingAItoseewhathumanscan’tsee.HowcanweusegenerativeAItoaugmentourvision?Thoughtheexactfigureisdisputed,
deathsduetomedicalerror
intheU.S.isasignificantproblem.GenerativeAImodelscouldassisthealthcareprovidersinseeingpotentialissuesthattheymayhaveotherwisemissed.Furthermore,ifthemistakesareduetominimalexposuretorare
GenerativeAI:PerspectivesfromStanfordHAI
situations,generativeAIcancreatesimulatedversionsofthisraredatatofurthertraintheAImodelsorthehealthcareprovidersthemselves.
Additionally,beforeweevenstartdeveloping
newgenerativetools,weneedtofocusonwhat
peoplewantfromthesetools.Inarecentprojectto
benchmarkroboticstasksbyourlab,beforeeven
startingtheresearch,theprojectteamdidalarge-
scaleuserstudytoaskpeoplehowmuchtheywould
benefitifarobotdidthesecertaintasksforthem.
Thewinningtaskswerethefocusoftheresearch.
Endowingmachineswith
thesecapabilities,generative
capabilities,hasbeena
dreamformanygenerations
ofAIscientists.
Tofullyrealizethesignificantopportunitythat
generativeAIcreates,weneedtoalsoevaluatethe
associatedrisks.JoyBuolamwiniledastudytitled
“GenderShades,”
whichfoundAIsystemsfrequently
failtorecognizewomenandpeopleofcolor.Study
resultswerepublishedin2018.Wecontinuetosee
similarbiasingenerativeAImodels,specificallyfor
underrepresentedpopulations.
5
AI’sGreatInflectionPoint(cont,d)
GenerativeAI:Perspectives
fromStanfordHAI
Theabilitytodeterminewhetheranimagewas
generatedusingAIisalsoessential.Oursocietyisbuilt
ontrustofcitizenshipandinformation.Ifwecannot
easilydeterminewhetheranimageisAIgenerated,
ourtrustofanyinformationwillerode.Inthiscase,we
needtopayspecialattentiontovulnerablepopulations
thatmaybeparticularlysusceptibletoadversarialuses
ofthistechnology.
Theprogressinamachine’scapabilitytogenerate
contentisveryexciting,asisthepotentialtoexplore
AI’sabilitytoseewhathumansarenotable.But
weneedtobeattentivetothewaysinwhichthese
capabilitieswilldisruptoureverydaylives,our
communities,andourroleasworldcitizens.
6
ThePotentialsofSyntheticPatients
GenerativeAI:Perspectives
fromStanfordHAI
RussAltman,KennethFongProfessorintheSchoolofEngineering;ProfessorofBioengineering,ofGenetics,ofMedicine,andofBiomedicalDataScience;AssociateDirectorof
StanfordHAI
Itisoftendifficulttogetlargenumbersofpatientsinclinicaltrialsanditiscrucialtohavearealisticgroupofpatientswhodonotreceiveatherapyinordertocompareoutcomeswiththosewhodo.ThisisoneareawithinbiomedicalresearchwheregenerativeAIoffersgreatopportunities.GenerativeAIcouldmakeclinicaltrialsmoreefficientbycreating“synthetic”controlpatients(i.e.,fakepatients)usingdatafromrealpatientsandtheirunderlyingattributes(tobecomparedwiththepatientswhoreceivethenewtherapy).Itcouldevengeneratesyntheticoutcomestodescribewhathappenstothesepatientsiftheyareuntreated.Biomedicalresearcherscouldthenusetheoutcomesofrealpatientsexposedtoanewdrugwiththesyntheticstatisticaloutcomesforthesyntheticpatients.Thiscouldmaketrialspotentiallysmaller,faster,andlessexpensive,andthusleadtofasterprogressindeliveringnewdrugsanddiagnosticstocliniciansandtheirpatients.
Inthepast,wehaveused“historicalcontrols”whicharepatientswhodidnothavethebenefitofthenewdrugordiagnostic–andcomparedtheiroutcomestopatientswhoreceivedthenewdrugordiagnostic.Syntheticpatientscouldmatchtherealpatientsmorerealistically;theyarecreatedusingknowledgeofcurrentmedications,diagnostictools,andstandardsofpracticethatwerelikelydifferentinthehistoricalsituation.
Inthesettingofmedicaleducation,generativeAIcouldallowustocreatepatientsthatareveryrealisticandcouldallowmedicalstudentstolearnhowtodetect
diseases.Theabilityforgenerativemodelstocreatemanyvariationsonathemecouldallowstudentstoseemultiplecasesofthesamediseaseandlearnthewaysinwhichthesepatientscanvary.Thiscouldgivethemmoreexperienceinseeingadiseaseandprovideanearlyunlimitedsetofcasesforthemtopracticeiftheyfindthatcertaindiseasesaremorechallengingforthemtorecognizeanddiagnose.Thesesamegenerativemodelscouldalsointeractwiththestudentsandgivethempracticeelicitingsignsandsymptomsthroughconversationalinteraction.
Thiscouldmaketrials
potentiallysmaller,faster,and
lessexpensive,andthuslead
tofasterprogressindelivering
newdrugsanddiagnostics.
Withopportunitycomesworry.Ifsyntheticpatientsaregeneratedfromdatathatdoesnotreflectthepopulationofpatientsreceivingthedrug,thepatientsmaybebiased.Moreworrisome,however,isthateventherealpatientsreceivingthedrugwillnotreflectthefullpopulation,andsosyntheticcontrolscouldjustimprovetheuseofthedrugsforasubsetofpatientsandnotall–leadingtoinequity.
Whilegenerativetechnologiescanbeveryusefulin
acceleratingscientificdiscoveryandprogress,care
mustbetakeninselectingthedatausedtogenerate
patientsandthemodelsmustbeexaminedvery
carefullyforbiasesthatmayleadtodisparateimpact.
7
GenerativeAI:PerspectivesfromStanfordHAI
PatientCaretoBilling
UpendingHealthcare,from
CurtLanglotz,ProfessorofRadiology,ofBiomedicalInformaticsResearch,and
ofBiomedicalDataScience;DirectoroftheCenterforArtificialIntelligencein
MedicineandImaging(AIMI);AssociateDirectorofStanfordHAI
Oneofthebenefitsofourhealthcaresystemisthatpatientscanseeavarietyofspecialistphysicianswhoareexpertsinspecificmedicaldisciplines.Thedownsideofoursystemisthatthesespecialistsoftenaren’tacquaintedwiththepatientstheyareseeing.Imagineaworldinwhichaspecialistyouareseeingforthefirsttimehasalreadyreadasuccinctsummaryofyourhealthcareneeds,createdbygenerativeAI.Duringthepatientvisit,achatbotbasedonafoundationmodelcouldserveasthephysician’sassistanttosupportmoreaccuratediagnosisandtailoredtherapyselection.Agenerativemodelcoulddraftaclinicnoteinrealtimebasedonthephysician-patientinteraction,leavingmoretimeforface-to-facediscussion.Inthebackoffice,generativemodelscouldoptimizeclinicschedulingorsimplifygenerationofmedicalcodesforbilling,diseasesurveillance,andautomatedfollow-upreminders.Thesenewcapabilitiescouldimprovetheaccuracyandefficiencyofpatientcarewhileincreasingpatientengagementandadherencetotherapy.
Recentfederallegislationgivespatientstherighttoaccesstheirentiremedicalrecordindigitalform.Asaresult,patientsareincreasinglyencounteringcomplexclinicaldocumentsthatcontainobscuremedicalterms.Whenapatientreturnshomefromaclinicvisit,afoundationmodelcouldgeneratetailoredpatienteducationmaterialsandexplaintheircareplanattheappropriatereadinglevel.
Machinelearningmodelsinmedicinearecritically
dependentonlargemedicaldatasetsthatcontain
examplesofdisease.
Wehaveshown
howdiffusion
models,atypeoffoundationmodel,canbemodified
tocreaterealisticclinicalimagesfromtextprompts.
Ourresultsdemonstratethatsynthetictrainingdata
producedbythesemodelscanaugmentrealtraining
datatoincreasediagnosticaccuracy.Thisformof
syntheticdatacouldhelpsolvemachinelearning
problemsforwhichtrainingdataisscarce,suchasthe
detectionandtreatmentofuncommondiseases.
Duringthepatientvisit,a
chatbot…couldserveasthe
physician’sassistanttosupport
moreaccuratediagnosisand
tailoredtherapyselection.
Finally,generativeAI’swell-reportedchallenges
withfactualcorrectnessareparticularlyproblematicinmedicine,whereinaccuraciescancauseseriousharm.Recentproblemsinmedicineincludeincorrectdifferentialdiagnosisandinvalidscientificcitations.Weareworkingto
improvethefactualcorrectness
ofmedicalexplanationsfromthesemodelssotheycanachieveanaccuracythatissuitableforsafeclinicaluse.
8
AnAIWindowintoNature
SuryaGanguli,AssociateProfessorofAppliedPhysics;AssociateDirectorof
StanfordHAI
Scientificideasfromthestudyofnatureitself,intheformofnonequilibriumthermodynamicsandthereversaloftheflowoftime,leadtothecreationatStanfordofthefirst
diffusionmodel
,akeykerneloftechnologythatformsthebasisofmanysuccessfulAIgenerativemodelstoday.Now,inavirtuouscycle,AIgenerativemodelsarewellpoisedtodeliverconsiderableinsightsintonatureitself,acrossbiological,physical,andmentalrealms,withbroadimplicationsforsolvingkeysocietalproblems.
Forexample,
generativemodelsofproteins
canallowustoefficientlyexplorethespaceofcomplexthree-dimensionalproteinstructures,therebyaidinginthesearchforproteinswithnovelandusefulfunctions,includingnewefficaciousmedicines.Generative
AIisstartingtobeexploredinthe
quantumrealm
,enablingustoefficientlymodelstronglycorrelatedstatesofelectrons,withthepotentialofadvancingourunderstandingof
materialsscience
and
quantum
chemistry
.Theseadvancescouldinturnleadtothecreationofnewmaterialsandcatalyststhatcouldplayaroleinefficientenergycaptureandstorage.Simplegenerativemodeling,intertwinedwithclassicalnumericalsolvers,hasalsomadekeyadvancesinaccurateandfastlargescale
fluid
mechanicalsimulations
,whichwhenscaledup,couldaidinclimatemodelingandweatherforecasting,therebycontributingtoadeeperunderstandingofourchangingclimateanditsramifications.
GenerativeAI:PerspectivesfromStanfordHAI
Inabeautifulrecursion,thegenerativeAImodelsthat
wehavecreatedcanalsoactasscientificwindows,
notonlyintothephysicalworldbutalsointoour
own
minds
.Forthefirsttime,wehaveAIsystems
thatcanmodelhigh-levelcognitivephenomena
likenaturallanguageandimageunderstanding.ManyneuroscientistsandcognitivescientistshavecomparedtheneuralrepresentationsofbothdeepnetworksandAIgenerativemodelstoneurobiologicalrepresentationsinhumansandanimals,oftenfindingstrikingsimilaritiesacrossmanybrainareas.Examplesincludethe
retina
,the
ventralvisualstream
,
motor
cortex
,
entorhinalcortex
fornavigation,
cortical
language
areas,andneuralgeometriesunderlying
few
shotconceptlearning
.Theoftensimilarstructureofartificialandbiologicalsolutionstogenerativetaskssuggeststheremaybesomecommonprinciplesgoverninghowintelligentsystems,whetherbiologicalorartificial,modelandgeneratecomplexdata.
AIgenerativemodelsarewell
poisedtodeliverconsiderable
insightsintonatureitself,
acrossbiological,physical,
andmentalrealms,with
broadimplicationsforsolving
keysocietalproblems.
9
AnAIWindowintoNature(cont,d)
GenerativeAI:Perspectives
fromStanfordHAI
AnexceedinglyinterestingandprofoundquestionarisesintheforthcomingageofscientificcollaborationbetweenhumansandAIsystemsastheyworktogetherinalooptoanalyzeourcomplexbiological,physical,andmentalworlds:WhatdoesitmeanforahumantoderiveaninterpretableunderstandingofacomplexsystemwhenanAIprovidesasubstantialpartofthatunderstandingthroughpredictivemodels?Issuesregarding
explainableAI
willlikelyrisetotheforewhenafundamentallyhumanscientificendeavor,namelyunderstandingourworld,ispartiallyachievedthroughtheuseofAI.HumanscientistswillnotbecontentwithuninterpretableAI-generatedpredictionsalone.Theywilldesirehumaninterpretableunderstanding,inaddition.
Finally,todreamevenbigger,whiletoday’sgenerativeAIhasaccesstoimmenseglobalscaletrainingdataspanningimages,text,andvideofromtheinternet,itdoesnothavedirectaccesstoourownthoughts,intheformofneuralactivitypatterns.However,thisneednotalwaysbethecase,givenremarkablenewneuroscientificcapacitiestorecordmanyneuronsfromthebrainsofanimalswhiletheyviewimages,aswellastoperformMEG,EEG,andfMRIfromhumansastheyexperiencetheworldthroughrichmultimodalsensoryexperiences.Suchcombinedneuralandreal-worlddatacouldthenpotentiallybeusedtotrainnextgenerationmultimodalfoundationmodelsthatnotonlyunderstandthephysicalworldbutalsounderstandthedirectimpactthephysicalworldhasonourmentalworld,intermsofelicitedneuralactivitypatterns.Whatmightsuchhybridbiological-artificialintelligencesteachusaboutourselves?
Overall,thefutureofgenerativeAIasawindowinto
nature,andtheuseofthiswindowtosolvesocietal
problems,isfullofpromise.Wecertainlydolivein
interestingtimes.
10
TheNewToolsofDailyLife
JamesLanday,AnandRajaramanandVenkyHarinarayanProfessorintheSchoolofEngineeringandProfessorofComputerScience;ViceDirectorofStanfordHAI
GenerativeAI:Perspectives
fromStanfordHAI
Asweallknow,AIistakingtheworldbystorm.Wewillbegintoseemanynewtoolsthataugmentourabilitiesinprofessionalandpersonalactivitiesandworkflows.Imagineasmarttutorthatisalwayspatientandunderstandsthelevelofknowledgethestudenthasatanypointintimeonanysubject.Thesetutorswillnotreplaceteachers,butinsteadwillaugmentthestudentlearningexperience–givingstudentsamorepersonalizedinteraction,focusinginareaswheretheymightbeweaker.
Indesign,pictureatoolthatassistsaprofessionaldesignerbyriffingofftheirinitialdesignideasandhelpingthemexploremoreideasorfillindetailsontheirinitialideas.GenerativeAIwillalsounleashlanguage-basedinterfaces,whetherwrittenorspoken,asamorecommonwayofinteractingwithoureverydaycomputingsystems,especiallywhenonthegoorwhenoureyesandhandsarebusy.ImagineanAlexa,Siri,orGoogleAssistantthatcanactuallyunderstandwhatyouaretryingtodoratherthanjustansweringsimplequeriesabouttheweatherormusic.
WhilegenerativeAIcreatesmanyexcitingopportunities,weknowfrompastAIdeploymentstherearerisks.In2016,anAI-basedsoftwaretoolusedacrossthecountrytopredictifacriminaldefendantwaslikelytoreoffendinthefuturewasshowntobebiasedagainstBlackAmericans.Weneedtoensurewearedesigningthesetoolstogetthemostpositiveoutcomes.Todothis,weneedtodeeplydesignand
analyzethesesystemsattheuser,thecommunity,andsocietallevels.Attheuserlevel,weneedtocreatenewdesignsthataugmentpeoplebyaccountingfortheirexistingworkflowsandcognitiveabilities.Butwecan’tjustdesignfortheuser.Weneedtoconsiderthecommunitythatthesystemimpacts:thefamilies,theinfrastructure,andthelocaleconomy.But,eventhatisnotenough,weneedtoanalyzetheimpactstosocietyatlarge.Weneedtobeabletoforecastwhathappensifthesystembecomesubiquitousandfromthestartdesignmitigationsforpossiblenegativeimpacts.
Changesthatareunderpinned
bygenerativeAIareonlynow
startingtobeimaginedby
designersandtechnologists.
Ouruserinterfacetocomputinghasbeenfairlystatic
overthelast30years.Inthenext5–10years,we
willseearevolutioninhuman-computerinteraction.
ChangesthatareunderpinnedbygenerativeAIare
onlynowstartingtobeimaginedbydesignersand
technologists.Nowisthetimetoensurethatweare
criticallythinkingabouttheuser,thecommunity,and
thesocietalimpacts.
11
PoetryWillNotOptimize:CreativityintheAgeofAI
MicheleElam,WilliamRobertsonCoeProfessorintheSchoolofHumanitiesandSciencesandProfessorofEnglish;AssociateDirectorofStanfordHAI
In2018,theprofessionalartworldwasupendedwhentherenownedChristie’sauctionhouse
soldanAI-
augmentedwork
,“PortraitofEdmondBelamy,”forthewildlyunexpectedsumof$435,000.Thatsale,whichcamewiththetacitimprimaturoftheestablishedartcommunity,generatedmuchgnashingofteethandhand-wringingintheartssectoroverwhatartificialintelligencemeansforthecreativeindustry.
Sincethen,thegeniehaslongfleditslamp:GenerativeAIhasenabledvisualartofeveryknowngenreaswellas
AI-augmentedpoetry
,fiction,
filmscripts
,
music
and
musicals
,
symphonies
,AI-curatedarthistories,andmuchmore.
ThefurorovertheChristie’ssalemaynowseemquaint–itoccurredbeforeDALL-E,LensaAI,ChatGPT,Bing,tonamejustafew–butitheraldedmanyoftoday’sincreasinglyferociousdebatesoverthenatureofcreativityandthefutureofworkforthecreativeindustry.Itanticipatedthecurrenthornet’snestofethical,political,andaestheticconcernsthatgenerativeAIposesforthearts.
Someoftheseconcernshavebeenproductive:GenerativeAIhasencouragedmanyofthosewhoselivelihoods,andinmanycasestheiridentities,dependontheirartisticproductionstoconsideranew–andinnewways–perennialquestionsaboutfoundationalaestheticnormsandvalue:Whatdo
GenerativeAI:PerspectivesfromStanfordHAI
weidentifyas“art”?Whatcountsas“good”art?Isartistrydefinedbyhumanagencyorautomation?Justwhoorwhatcanmake“art”?Andwhodecides?GenerativeAIraisesimportant,thornyquestionsaboutauthenticity,economicvaluation,provenance,creatorcompensation,andcopyright.(TheGettyImageslawsuitagainstStableDiffusionisjustthetipofaniceberg.)Italso,arguably,normalizesextractiveandexploitativeapproachestocreatorsandtheirwork;amplifiesbiasesofeverykind;exacerbatesalreadyurgenteducationalandnationalsecurityconcernsarounddeepfakesandplagiarism,especiallyintheabsenceofcongressionalregulation.
Shouldtheprinciplesof
efficiency,speed,and
so-calledblessingsofscale
applysounequivocallyto
creativeprocesses?Afterall,
poetrydoesnotoptimize.
Perhapsthemostpressingconcern,intermsofnationalsecurity,isthatgenerativeAImighttakeadvantageofthefactthattheartshavealwaysshaped–forgoodorill–thecivicimagination,thatstories,films,plays,imagesshapeourperceptionofourselves,ofourphysicalandsocialrealities.OneofthemostfamousdisagreementsbetweenPlatoandhisstudentAristotlewasoverthepotentiallydangerouspowerof
12
PoetryWillNotOptimize:CreativityintheAgeofAI(contd)
GenerativeAI:Perspectives
fromStanfordHAI
poesytoinfluencebeliefsandworldviews.Thispoweriswhyfascistregimesfirstdoawaywiththeartistsandintellectuals:becausetheyholdswayoverourmindsandthusouractions.
SomeclaimthatgenerativeAIisdemocratizingaccesstocreativeexpressiontothosetraditionallybarredfromitbylackofstatusorwealth.Butdoclaimsto“democratization”and“access”function,ineffect,asindustrycoverfor
rushingacommercialapplication
“intothewild”
(i.e.,tothepublic)withoutthetime-intensiveworkofensuringethicalguardrails?
IsAIsimplyaneutralifpowerfulassistivetoolforthearts–akintopen,paintbrush,orphotography?Isit“
blitzscaling
”creativity,orinEmadMostaque’s
choice
description
,relievingour“creativelyconstipated”worldwithAItechnologiesthatcanhaveusall
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人月考總結(jié)200字 (20篇)
- 2024年投資股份合同范本
- 辦公室租賃協(xié)議
- 2024年攪拌車買賣協(xié)議樣本
- DB4107T 479-2021 夏玉米中后期利用赤眼蜂防治螟蟲技術(shù)規(guī)程
- 2024年財務(wù)會計試用期工作總結(jié)20篇
- 2024年攜手共進(jìn):建筑行業(yè)合作伙伴協(xié)議
- 專題十四互斥雜化軌道理論與分子性質(zhì)-2024年高考化學(xué)二輪復(fù)習(xí)講與練
- 2023年浙江省杭州市中考科學(xué)一模試題分類匯編(3)物理填空
- 2024年度文化產(chǎn)業(yè)投資與戰(zhàn)略合作合同
- 2024混合動力汽車賽道專題報告-2024-10-市場解讀
- DB34T 4338-2022 行政規(guī)范性文件合法性審核規(guī)范
- 企業(yè)單位消防安全規(guī)范化管理指導(dǎo)手冊
- 廢舊物資回收投標(biāo)方案(技術(shù)方案)
- 宣傳視頻拍攝服務(wù)投標(biāo)方案(技術(shù)方案)
- 森林防火課件下載
- 3《歡歡喜喜慶國慶》(教學(xué)設(shè)計)2024-2025學(xué)年統(tǒng)編版道德與法治二年級上冊
- 2024糧改飼工作總結(jié)五篇
- 合作收款合同協(xié)議書
- 2024至2030年中國生物質(zhì)能發(fā)電行業(yè)市場深度調(diào)研及發(fā)展前景分析報告
- 鐵路軌道鋪設(shè)工程合同三篇
評論
0/150
提交評論