版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
35第7章圓之與直徑有關的輔助線一、選擇題1.如圖,AB為⊙O的直徑,點C為弧AB的中點,弦CD交AB于點E,若SKIPIF1<0,則tan∠B的值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】如圖(見解析),連接OC,過O作SKIPIF1<0于E,過D作SKIPIF1<0于F,先根據(jù)垂徑定理得到SKIPIF1<0,設SKIPIF1<0,從而可得SKIPIF1<0,再根據(jù)相似三角形的判定與性質可得SKIPIF1<0,從而可得SKIPIF1<0,又根據(jù)相似三角形的判定與性質可得DF、EF的長,從而可得BF的長,最后根據(jù)正切三角函數(shù)的定義即可得.【詳解】如圖,連接OC,過O作SKIPIF1<0于E,過D作SKIPIF1<0于F∵SKIPIF1<0∴設SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0∵AB為⊙O的直徑,點C為弧AB的中點∴SKIPIF1<0在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0(不符題意,舍去)SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0SKIPIF1<0SKIPIF1<0則在SKIPIF1<0中,SKIPIF1<0故選:C.【點睛】本題考查了垂徑定理、圓心角定理、相似三角形的判定與性質、正切三角函數(shù)等知識點,通過作輔助線,構造相似三角形和直角三角形是解題關鍵.二、填空題2.如圖,CD為圓O的直徑,弦AB⊥CD,垂足為E,若∠BCD=22.5°,AB=2cm,則圓O的半徑為______.【答案】SKIPIF1<0【分析】連接OB,根據(jù)垂徑定理以及勾股定理即可求出OB的長度.【詳解】如圖,連接OB,∵OC=OB,∠BCD=22.5°,∴∠EOB=45°,∵AB⊥CD,CD是直徑,AB=2,∴EB=SKIPIF1<0AB=1,∴OE=EB=1,∴OB=SKIPIF1<0=SKIPIF1<0,故答案為:SKIPIF1<0【點睛】本題考查垂徑定理、勾股定理及三角形外角性質,垂直弦的直徑平分弦,并且平分弦這條弦所對的兩條?。皇炀氄莆沾箯蕉ɡ硎墙忸}關鍵.3.如圖,已知SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0是SKIPIF1<0的弦,過點SKIPIF1<0作SKIPIF1<0的切線,與SKIPIF1<0的延長線交于點SKIPIF1<0作SKIPIF1<0交直線SKIPIF1<0于點SKIPIF1<0.若SKIPIF1<0則SKIPIF1<0______________.【答案】SKIPIF1<0【分析】連接BC,求得BC=5,證明△ABC∽△EAB,根據(jù)相似性質即可求出BE.【詳解】解:如圖,連接SKIPIF1<0.在SKIPIF1<0中,根據(jù)勾股定理,得SKIPIF1<0SKIPIF1<0SKIPIF1<0是直徑,SKIPIF1<0.SKIPIF1<0是SKIPIF1<0的切線,SKIPIF1<0即SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故答案為:SKIPIF1<0【點睛】(1)見直徑,想半徑或想圓周角為直角;(2)見切線想做過切點的直徑,構造直角;(3)求線段的長度在幾何圖形中一般選擇勾股定理、相似、或三角函數(shù)來求解.4.如圖所示,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別在射線SKIPIF1<0,SKIPIF1<0上移動,且SKIPIF1<0,則點SKIPIF1<0到點SKIPIF1<0的距離的最大值為__.【答案】SKIPIF1<0.【解析】【分析】過SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點作SKIPIF1<0,作直徑SKIPIF1<0連結SKIPIF1<0,根據(jù)等腰直角三角形的性質可得SKIPIF1<0,再根據(jù)同弧所對的圓周角相等得出SKIPIF1<0,從而確定SKIPIF1<0的直徑即可【詳解】如圖所示,過SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點作SKIPIF1<0,作直徑SKIPIF1<0連結SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0,弦SKIPIF1<0的最大值等于直徑SKIPIF1<0∴SKIPIF1<0到點SKIPIF1<0的距離的最大值為SKIPIF1<0【點睛】本題考查了圓周角的性質定理,等腰直角三角形的性質,以及勾股、勾股定理等知識點,掌握直徑是圓中最長的弦是解題的關鍵5.用兩根同樣長的鐵絲分別圍成一個長方形和一個正方形,已知長方形的長比寬多am,則正方形面積與長方形面積的差為______SKIPIF1<0.(用含a的代數(shù)式表示)【答案】SKIPIF1<0【分析】設出長方形的長和正方形的長,設出鐵絲的長度,用l表示面積做差即可得出.【詳解】設長方形的長為x,結合題意可知寬為x-a,設鐵絲的長度為l,建立方程SKIPIF1<0,解得SKIPIF1<0,則長方形的面積為SKIPIF1<0而正方形的面積為SKIPIF1<0,所以面積差為SKIPIF1<0故答案為SKIPIF1<0a2【點睛】本題考查了長方形面積計算公式,正方形面積計算公式,運用多項式做差是解題的關鍵.6.如圖,SKIPIF1<0、SKIPIF1<0是半徑為5的SKIPIF1<0的兩條弦,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是直徑,SKIPIF1<0于點SKIPIF1<0,SKIPIF1<0于點SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上的任意一點,則SKIPIF1<0的最小值為____.【答案】SKIPIF1<0.【分析】A、B兩點關于MN對稱,因而PA+PC=PB+PC,即當B、C、P在一條直線上時,PA+PC的最小,即BC的值就是PA+PC的最小值【詳解】連接OA,OB,OC,作CH垂直于AB于H.
根據(jù)垂徑定理,得到BE=SKIPIF1<0SKIPIF1<0SKIPIF1<0∴CH=OE+OF=3+4=7,
BH=BE+EH=BE+CF=4+3=7,
在直角△BCH中根據(jù)勾股定理得到BC=7SKIPIF1<0,
則PA+PC的最小值為7SKIPIF1<0.【點睛】正確理解BC的長是PA+PC的最小值,是解決本題的關鍵.7.如圖,已知SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,以SKIPIF1<0為直徑作SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,在SKIPIF1<0上取點SKIPIF1<0使SKIPIF1<0,SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0,已知SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0【分析】連接CE,EF,BF,過F作FG⊥AC于點G,設SKIPIF1<0,則SKIPIF1<0,利用SKIPIF1<0求出SKIPIF1<0的值,利用SKIPIF1<0求出SKIPIF1<0和SKIPIF1<0的值,利用SKIPIF1<0求出SKIPIF1<0的值,進而求出SKIPIF1<0,從而得出結論.【詳解】解:連接CE,∵BC是直徑,∴CE⊥BA,又∵SKIPIF1<0,∴設SKIPIF1<0,則SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,連接EF,∵四邊形BCFE是圓內接四邊形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,即:SKIPIF1<0解得:SKIPIF1<0,∴SKIPIF1<0,連接BF,過F作FG⊥AC于點G,∵BC是直徑,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,由勾股定理得:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故答案為:SKIPIF1<0.【點睛】本題屬于圓的綜合題,難度較大,主要考查了圓內接四邊形、相似、勾股定理、直角三角形,三角函數(shù)等知識點.在解題過程中,要靈活應用,尤其是輔助線的構造,是解決本題的關鍵.三、解答題8.如圖所示,SKIPIF1<0是銳角三角形SKIPIF1<0的外接圓SKIPIF1<0的半徑,SKIPIF1<0于點SKIPIF1<0,求證:SKIPIF1<0.【答案】見解析.【解析】【分析】作直徑SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0分別位于SKIPIF1<0和SKIPIF1<0中,根據(jù)等角的補角相等即可得證.【詳解】延長SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,連結SKIPIF1<0∵SKIPIF1<0是直徑∴SKIPIF1<0∵SKIPIF1<0于點SKIPIF1<0∴SKIPIF1<0又在SKIPIF1<0中SKIPIF1<0∴SKIPIF1<0.【點睛】本題考查了圓周角的性質定理,經(jīng)常利用直徑構造直角,來推理證明圓中角度問題.9.如圖,AB為⊙O的直徑,且AB=4,DB⊥AB于B,點C是弧AB上的任一點,過點C作⊙O的切線交BD于點E.連接OE交⊙O于F.(1)求證:AD∥OE;(2)填空:連接OC、CF,①當DB=時,四邊形OCEB是正方形;②當DB=時,四邊形OACF是菱形.【答案】(1)見解析;(2)①4,②BD=4SKIPIF1<0.【分析】(1)連接OC、BC,由AB為⊙O的直徑,DB⊥AB于B,推出DB是⊙O的切線,進而證明OE⊥BC,AC⊥BC,即可得出結論;(2)①若四邊形OCEB是正方形,CE=BE=OB=OC=SKIPIF1<0AB=2,由(1)可證SKIPIF1<0,得到DE=BE=2,BD=BE+DE=4即可求出;②若四邊形OACF是菱形,則OA=AC,又OA=OC,于是△OAC為等邊三角形,∠A=60°,在Rt△ABD中,由tanA=SKIPIF1<0,即可求得BD.【詳解】(1)證明:連接OC、BC,如圖1,∵AB為⊙O的直徑,DB⊥AB于B,∴DB是⊙O的切線,∵CE與⊙O相切于點C,∴BE=CE,∴點E在BC的垂直平分線上,∵OB=OC,∴點O在BC的垂直平分線上,∴OE⊥BC,∵∠ACB=90°,即AC⊥BC,∴AD∥OE;(2)如圖2,①若四邊形OCEB是正方形,AB=4,∴CE=BE=OB=OC=SKIPIF1<0AB=2,∵OE∥AC,∴SKIPIF1<0,∴DE=BE=2,∴BD=BE+DE=4,故答案為:4;②若四邊形OACF是菱形,∴CO平分∠ACF,CF∥OA,∴∠ACO=∠FCO=∠AOC,∵OA=OC,∴∠A=∠ACO=∠AOC,∴△AOC是等邊三角形,∴∠A=60°,∵∠ABD=90°,∴Rt△ABD中,tanA=SKIPIF1<0,∴BD=4SKIPIF1<0,故答案為:4SKIPIF1<0;【點睛】本題是圓綜合題,正方形的性質,菱形的性質,以及等邊三角形的性質等知識,熟練掌握圓的相關性質以及菱形和正方形的性質是解題的關鍵.10.如圖,AB為⊙O的直徑,C為⊙O上的一點,AD⊥CD于點D,AC平分∠DAB.(1)求證:CD是⊙O的切線.(2)設AD交⊙O于E,SKIPIF1<0,SKIPIF1<0ACD的面積為6,求BD的長.【答案】(1)見解析;(2)SKIPIF1<0.【分析】(1)連接OC,根據(jù)等腰三角形的性質,角平分線的定義得到∠DAC=∠OCA,證明OC//AD,根據(jù)平行線的性質得到∠OCE=∠ADC=90°,根據(jù)切線的判定定理證明;(2)設AC=5x,CD=3x,根據(jù)勾股定理得到AD=4x,根據(jù)三角形的面積得到AD=4,CD=3,AC=5,連接BC,根據(jù)相似三角形的性質得到AB=SKIPIF1<0,連接BE交OC于F,由垂徑定理得到OC⊥BE,BF=EF,得到EF=CD=3,根據(jù)勾股定理即可得到結論.【詳解】(1)證明:連接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC//AD,∴∠OCE=∠ADC=90°,∴CD是⊙O的切線;(2)解:∵SKIPIF1<0=SKIPIF1<0,∴設AC=5x,CD=3x,∴AD=4x,∵SKIPIF1<0ACD的面積為6,∴SKIPIF1<0AD?CD=SKIPIF1<0=6,∴x=1(負值舍去),∴AD=4,CD=3,AC=5,連接BC,∵AB為⊙O的直徑,∴∠ACB=90°,∴∠ACB=∠ADC,∵∠DAC=∠CAB,∴SKIPIF1<0ADC∽SKIPIF1<0ACB,∴SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0,∴AB=SKIPIF1<0,∵∠DAC=∠CAB,∴SKIPIF1<0,連接BE交OC于F,∴OC⊥BE,BF=EF,∵AB為⊙O的直徑,∴∠AEB=∠DEB=90°,∴四邊形CDEF是矩形,∴EF=CD=3,∴BE=6,∴AE=SKIPIF1<0=SKIPIF1<0,∴DE=4﹣SKIPIF1<0=SKIPIF1<0,∴BD=SKIPIF1<0=SKIPIF1<0.【點睛】本題考查了切線的判定和性質,相似三角形的判定和性質,三角形的面積公式,圓周角定理,正確的作出輔助線是解題的關鍵.11.如圖,AB為⊙O的直徑,點C是⊙O上的一點,AB=8cm,∠BAC=30°,點D是弦AC上的一點.(1)若OD⊥AC,求OD長;(2)若CD=2OD,判斷SKIPIF1<0形狀,并說明理由.【答案】(1)2;(2)等腰三角形,見解析.【分析】(1)由直角三角形的性質求解SKIPIF1<0再證明SKIPIF1<0,即可得到答案;(2)如圖,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0連接SKIPIF1<0求解SKIPIF1<0設SKIPIF1<0則SKIPIF1<0SKIPIF1<0利用勾股定理求解SKIPIF1<0,從而可得答案.【詳解】解:(1)SKIPIF1<0AB為⊙O的直徑,SKIPIF1<0SKIPIF1<0AB=8cm,∠BAC=30°,SKIPIF1<0SKIPIF1<0OD⊥AC,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0是等腰三角形.理由如下:如圖,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0連接SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0設SKIPIF1<0則SKIPIF1<0SKIPIF1<0由勾股定理可得:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0是等腰三角形.【點睛】本題考查的是圓的基本性質,垂徑定理,三角形的中位線的判定與性質,勾股定理的應用,等腰三角形的判定,銳角三角函數(shù)的應用,掌握以上知識是解題的關鍵.12.如圖,已知AB是半圓O的直徑,AB=6,點C在半圓O上.過點A作AD⊥OC,垂足為點D,AD的延長線與弦BC交于點E,與半圓O交于點F(點F不與點B重合).(1)當點F為SKIPIF1<0的中點時,求弦BC的長;(2)設OD=x,SKIPIF1<0=y(tǒng),求y與x的函數(shù)關系式;(3)當△AOD與△CDE相似時,求線段OD的長.【答案】(1)3SKIPIF1<0;(2)y=SKIPIF1<0;(3)SKIPIF1<0【分析】(1)連結OF,交BC于點H.得出∠BOF=∠COF.則∠AOC=∠COF=∠BOF=60°,可求出BH,BC的長;(2)連結BF.證得OD∥BF,則SKIPIF1<0,即SKIPIF1<0,得出SKIPIF1<0,則得出結論;(3)分兩種情況:①當∠DCE=∠DOA時,AB∥CB,不符合題意,舍去,②當∠DCE=∠DAO時,連結OF,證得∠OAF=30°,得出OD=SKIPIF1<0,則答案得出.【詳解】解:(1)如圖1,連結OF,交BC于點H.∵F是SKIPIF1<0中點,∴OF⊥BC,BC=2BH.∴∠BOF=∠COF.∵OA=OF,OC⊥AF,∴∠AOC=∠COF,∴∠AOC=∠COF=∠BOF=60°,在Rt△BOH中,sin∠BOH=SKIPIF1<0,∵AB=6,∴OB=3,∴BH=SKIPIF1<0,∴BC=2BH=3SKIPIF1<0;(2)如圖2,連結BF.∵AF⊥OC,垂足為點D,∴AD=DF.又∵OA=OB,∴OD∥BF,BF=2OD=2x.∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴y=SKIPIF1<0.(3)△AOD和△CDE相似,分兩種情況:①當∠DCE=∠DOA時,AB∥CB,不符合題意,舍去.②當∠DCE=∠DAO時,連結OF.∵OA=OF,OB=OC,∴∠OAF=∠OFA,∠OCB=∠OBC.∵∠DCE=∠DAO,∴∠OAF=∠OFA=∠OCB=∠OBC.∵∠AOD=∠OCB+∠OBC=2∠OAF,∴∠OAF=30°,∴OD=SKIPIF1<0.即線段OD的長為SKIPIF1<0.【點睛】本題屬于圓綜合題,考查了垂徑定理,勾股定理,直角三角形的性質,圓周角定理,相似三角形的判定和性質,銳角三角函數(shù),解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造基本圖形解決問題.13.如圖,已知SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0邊與SKIPIF1<0相交于點SKIPIF1<0,SKIPIF1<0過經(jīng)過圓心SKIPIF1<0,與SKIPIF1<0相交于點SKIPIF1<0,SKIPIF1<0的切線SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0(1)求證:SKIPIF1<0(2)若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長【答案】(1)證明見解析;(2)SKIPIF1<0.【分析】(1)如圖1,連接SKIPIF1<0,由SKIPIF1<0是SKIPIF1<0的切線,得到SKIPIF1<0,即SKIPIF1<0,再由SKIPIF1<0,由等角的余角相等可得SKIPIF1<0,根據(jù)等腰三角形的判定得到即可得出SKIPIF1<0.(2)連接SKIPIF1<0,通過利用三角函數(shù)求出SKIPIF1<0,再由勾股定理求出AB=15,根據(jù)SKIPIF1<0,即可解答.【詳解】解:(1)連接SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的切線SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0(2)連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0【點睛】本題考查了切線的性質,勾股定理,解直角三角形,圓周角定理,正確的作出輔助線是解題的關鍵.14.如圖,在正方形ABCD中,SKIPIF1<0,E,F(xiàn)分別為BC,AD上的點,過點E,F(xiàn)的直線將正方形ABCD的面積分為相等的兩部分,過點A作SKIPIF1<0于點G,連接DG,則線段DG的最小值為______.【答案】SKIPIF1<0【分析】連接AC,BD交于O,得到EF過點O,推出點G在以AO為直徑的半圓弧上,設AO的中點為M,連接DM交半圓弧于G,則此時,DG最小,根據(jù)正方形的性質得到SKIPIF1<0,SKIPIF1<0,根據(jù)勾股定理即可得到結論.【詳解】解:連接AC,BD交于O,SKIPIF1<0過點E、F的直線將正方形ABCD的面積分為相等的兩部分,SKIPIF1<0過點O,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點G在以AO為直徑的半圓弧上,則SKIPIF1<0設AO的中點為M,連接DM交半圓弧于G,則此時,DG最小,SKIPIF1<0四邊形ABCD是正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0故答案為:SKIPIF1<0.【點睛】本題考查了正方形的性質,勾股定理,圓周角定理,正確地作出輔助線是解題的關鍵.15.如圖1,在SKIPIF1<0中,弦SKIPIF1<0與半徑SKIPIF1<0交于點SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0;(2)如圖2,過點SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0,垂足為SKIPIF1<0,連接SKIPIF1<0,求證:SKIPIF1<0;(3)如圖3,在(2)的條件下,連接SKIPIF1<0并延長SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0時,求線段SKIPIF1<0的長度.【答案】(1)證明見解析;(2)證明見解析;(3)SKIPIF1<0.【分析】(1)延長SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,根據(jù)等腰三角形的底角相等,三角形的外角的性質,結合SKIPIF1<0,得SKIPIF1<0,再結合圓周角定理,得SKIPIF1<0,即可得到結論;(2)作SKIPIF1<0于SKIPIF1<0,SKIPIF1<0于SKIPIF1<0,根據(jù)等腰三角形三線合一,得SKIPIF1<0,結合條件得SKIPIF1<0,易證SKIPIF1<0,結合垂徑定理,即可得到結論;(3)延長SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,先證SKIPIF1<0,再證SKIPIF1<0,SKIPIF1<0,得四邊形SKIPIF1<0是平行四邊形,根據(jù)直角三角形和等腰三角形的性質得SKIPIF1<0,結合平行線截得的線段成比例與勾股定理,即可求解.【詳解】(1)如圖1中,延長SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)如圖2中,作SKIPIF1<0于SKIPIF1<0,SKIPIF1<0于SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵CD⊥AB,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(3)在圖3中,延長SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,CT⊥DB,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【點睛】本題主要考查圓的基本性質與全等三角形,相似三角形,勾股定理,平行四邊形的綜合,添加輔助線,構造全等三角形,相似三角形,是解題的關鍵.16.如圖所示,四邊形SKIPIF1<0的四個頂點在SKIPIF1<0上,且對角線SKIPIF1<0于SKIPIF1<0,求證:SKIPIF1<0為定值.【答案】見解析.【解析】【分析】作直徑SKIPIF1<0,連結SKIPIF1<0,SKIPIF1<0,根據(jù)直徑所對的圓周角為直角得出SKIPIF1<0,從而得出SKIPIF1<0利用勾股定理即可解決問題.【詳解】作直徑SKIPIF1<0,連結SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0∴SKIPIF1<0,∴弧AD=弧CE,∴SKIPIF1<0,根據(jù)勾股定理得:SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0為定值.【點睛】本題考查圓周角定理,勾股定理,兩條平行線所夾的弧相等等知識,解題的關鍵是學會利用定理和性質進行轉化.17.如圖所示,SKIPIF1<0為SKIPIF1<0的一條弦,點SKIPIF1<0為SKIPIF1<0上一動點,且SKIPIF1<0,點SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0的中點,直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點,若SKIPIF1<0的半徑為7,求SKIPIF1<0的最大值.【答案】SKIPIF1<0的最大值為SKIPIF1<0.【解析】【分析】由SKIPIF1<0和SKIPIF1<0組成SKIPIF1<0的弦SKIPIF1<0,在SKIPIF1<0中,弦SKIPIF1<0最長為直徑14,而SKIPIF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024融資租賃合同的租賃物描述及租金支付
- 二零二五年度道路橋梁鋼筋加工與施工監(jiān)理合同3篇
- 家庭教育與辦公環(huán)境的融合探討
- 小學生幾何空間課模板
- 小微企業(yè)園區(qū)文化旅游開發(fā)策略
- 專業(yè)貨架銷售與售后服務合同書一
- 二零二五年度重型機械車輛質押擔保合同3篇
- 2025年度跨境電子商務物流合作合同2篇
- 不動產(chǎn)最高額抵押合同中的債務履行期限
- 小學數(shù)學教育與數(shù)學文化融合的策略探討
- SHS5230三星指紋鎖中文說明書
- 無水氯化鈣MSDS資料
- 專利產(chǎn)品“修理”與“再造”的區(qū)分
- 氨堿法純堿生產(chǎn)工藝概述
- 健康管理專業(yè)建設規(guī)劃
- 指揮中心大廳及機房裝修施工組織方案
- 真心英雄合唱歌詞
- 架空電力線路導線應力弧垂計算
- 上海交通大學留學生本科入學考試 英語
- 【校本教材】《身邊的化學》高中化學校本課程
- 常住人口項目變更更正呈批表
評論
0/150
提交評論