廣西壯族自治區(qū)柳州市靈山縣太平中學(xué)高三數(shù)學(xué)理月考試卷含解析_第1頁
廣西壯族自治區(qū)柳州市靈山縣太平中學(xué)高三數(shù)學(xué)理月考試卷含解析_第2頁
廣西壯族自治區(qū)柳州市靈山縣太平中學(xué)高三數(shù)學(xué)理月考試卷含解析_第3頁
廣西壯族自治區(qū)柳州市靈山縣太平中學(xué)高三數(shù)學(xué)理月考試卷含解析_第4頁
廣西壯族自治區(qū)柳州市靈山縣太平中學(xué)高三數(shù)學(xué)理月考試卷含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣西壯族自治區(qū)柳州市靈山縣太平中學(xué)高三數(shù)學(xué)理月考試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.平面向量的夾角為等于A. B. C.12 D.參考答案:B【知識點】向量加減混合運算及其幾何意義F2

由已知|a|=2,|a+2b|2=a2+4a?b+4b2=4+4×2×1×cos60°+4=12,∴|a+2b|=.故選:B.【思路點撥】根據(jù)向量的坐標求出向量的模,最后結(jié)論要求模,一般要把模平方,知道夾角就可以解決平方過程中的數(shù)量積問題,題目最后不要忘記開方.2.為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息.設(shè)定原信息為(),傳輸信息為,其中,運算規(guī)則為:,,,,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過程中受到干擾可能導(dǎo)致接收信息出錯,則下列接收信息一定有誤的是(

)A.11010

B.01100

C.10111

D.00011參考答案:C3.從甲、乙兩種棉花中各抽測了25根棉花的纖維長度(單位:mm)組成一個樣本,得到莖葉圖如圖:甲、乙兩種棉花纖維的平均長度分別用表示,標準差分別用表示,則A. B.

C. D.參考答案:C4.執(zhí)行如圖所示程序框圖,若輸出的結(jié)果為3,則可輸入的實數(shù)的個數(shù)為A.1

B.2

C.

3

D.4參考答案:C略5.根據(jù)下列情況,判斷三角形解的情況,其中正確的是()A.a(chǎn)=8,b=16,A=30°,有兩解 B.b=18,c=20,B=60°,有一解C.a(chǎn)=5,c=2,A=90°,無解 D.a(chǎn)=30,b=25,A=150°,有一解參考答案:D考點: 解三角形.專題: 解三角形.分析: 利用正弦定理分別對A,B,C,D選項進行驗證.解答: 解:A項中sinB=?sinA=1,∴B=,故三角形一個解,A項說法錯誤.B項中sinC=sinB=,∵0<C<π,故C有銳角和鈍角兩種解.C項中b==,故有解.D項中B=?sinA=,∵A=150°,∴B一定為銳角,有一個解.故選:D.點評: 本題主要考查了正弦定理的應(yīng)用.對三角形中角的正弦的值,一定對角進行討論.6.設(shè)函數(shù)則的值為A.15

B.16C.-5

D.-15參考答案:A略7.已知表示不大于x的最大整數(shù),若函數(shù)在(0,2)上僅有一個零點,則a的取值范圍為A.

B.C.

D.參考答案:D表示不大于的最大整數(shù),若函數(shù)在上僅有一個零點,由,討論,即可得由,可得,求得若,即可得由,可得求得則的取值范圍是故選

8.已知全集,,,則(?uM)N為A.

B.

C.

D.參考答案:C9.在△ABC中,若sinA=2sinBcosC,sin2A=sin2B+sin2C,則△ABC的形狀是()A.等邊三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形參考答案:D【考點】三角形的形狀判斷.【分析】通過正弦定理判斷出三角形是直角三角形,通過sinA=2sinBcosC,利用正弦定理與余弦定理,推出三角形是等腰三角形,得到結(jié)果.【解答】解:因為sin2A=sin2B+sin2C,由正弦定理可知,a2=b2+c2,三角形是直角三角形.又sinA=2sinBcosC,所以a=2b,解得b=c,三角形是等腰三角形,所以三角形為等腰直角三角形.故選D.【點評】本題考查三角形的形狀的判斷,正弦定理與余弦定理的應(yīng)用,考查計算能力.10.“l(fā)og2a>log2b”是“2a>2b”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件參考答案:A考點:必要條件、充分條件與充要條件的判斷.專題:函數(shù)的性質(zhì)及應(yīng)用;不等式的解法及應(yīng)用.分析:分別解出2a>2b,log2a>log2b中a,b的關(guān)系,然后根據(jù)a,b的范圍,確定充分條件,還是必要條件.解答:解:2a>2b?a>b,當a<0或b<0時,不能得到log2a>log2b,反之由log2a>log2b即:a>b>0可得2a>2b成立.∴“l(fā)og2a>log2b”是“2a>2b”的充分不必要條件.故選A.點評:本題考查對數(shù)函數(shù)的單調(diào)性與特殊點,必要條件、充分條件與充要條件的判斷,是基礎(chǔ)題.二、填空題:本大題共7小題,每小題4分,共28分11.某同學(xué)為研究函數(shù)

的性質(zhì),構(gòu)造了如圖所示的兩個邊長為1的正方形和,點

是邊上的一個動點,設(shè),則.請你參考這些信息,

推知函數(shù)的極值點是

;函數(shù)的值域是

.參考答案:略12.設(shè),滿足約束條件,則的最大值為

.參考答案:213.設(shè),,且,則

.參考答案:14.為了提高命題質(zhì)量,命題組指派5名教師對數(shù)學(xué)卷的選擇題、填空題和解答題這3種題型進行改編,則每種題型至少指派一名教師的不同分派方法種數(shù)為_____種.參考答案:150【分析】采用分步計數(shù)原理,首先將5人分成三組,計算出分組的方法,然后將三組進行全排,即可得到答案。【詳解】根據(jù)題意,分2步進行分析:①將5人分成3組,若分為1、1、3的三組,有=10種分組方法;若分為1、2、2的三組,=15種分組方法;則有10+15=25種分組方法;②,將分好的三組全排列,對應(yīng)選擇題、填空題和解答題3種題型,有種情況,則有25×6=150種分派方法;故答案為:150.【點睛】本題考查排列組合的運用,屬于基礎(chǔ)題。15.若函數(shù),記,

,則

參考答案:,,,由歸納法可知。16.隨機變量的概率分布規(guī)律為,其中是常數(shù),則_______________

參考答案:略17.在中,

是的

條件.參考答案:充要條件略三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.如圖,三棱柱ABC﹣A1B2C3的底面是邊長為4正三角形,AA1⊥平面ABC,AA1=2,M為A1B1的中點.(Ⅰ)求證:MC⊥AB;(Ⅱ)在棱CC1上是否存在點P,使得MC⊥平面ABP?若存在,確定點P的位置;若不存在,說明理由.(Ⅲ)若點P為CC1的中點,求二面角B﹣AP﹣C的余弦值.參考答案:考點:與二面角有關(guān)的立體幾何綜合題;直線與平面垂直的判定.專題:綜合題;空間位置關(guān)系與距離;空間角.分析:(Ⅰ)取AB中點O,連接OM,OC,證明AB⊥平面OMC,可得MC⊥AB;(Ⅱ)建立空間直角坐標系,設(shè)P(0,2,t)(0≤t≤2),要使直線MC⊥平面ABP,只要?=0,?=0,即可得出結(jié)論;(Ⅲ)若點P為CC1的中點,求出平面PAC的一個法向量、平面PAB的一個法向量,利用向量的夾角公式,即可求二面角B﹣AP﹣C的余弦值.解答: (I)證明:取AB中點O,連接OM,OC.∵M為A1B1中點,∴MO∥A1A,又A1A⊥平面ABC,∴MO⊥平面ABC,∴MO⊥AB∵△ABC為正三角形,∴AB⊥CO

又MO∩CO=O,∴AB⊥平面OMC又∵MC?平面OMC∴AB⊥MC(II)解:以O(shè)為原點,建立空間直角坐標系.如圖.依題意O(0,0,0),A(﹣2,0,0)B(2,0,0),C(0,2,0),M(0,0,2).

設(shè)P(0,2,t)(0≤t≤2),則=(0,2,﹣2),=(4,0,0),=(0,2,t).要使直線MC⊥平面ABP,只要?=0,?=0,即12﹣2t=0,解得t=.

∴P的坐標為(0,2,).∴當P為線段CC1的中點時,MC⊥平面ABP(Ⅲ)解:取線段AC的中點D,則D(﹣1,,0),易知DB⊥平面A1ACC1,故=(3,﹣,0)為平面PAC的一個法向量.….又由(II)知=(0,2,﹣2)為平面PAB的一個法向量.

設(shè)二面角B﹣AP﹣C的平面角為α,則cosα=||=.∴二面角B﹣AP﹣C的余弦值為.點評:本小題主要考查空間直線與直線、直線與平面的位置關(guān)系、二面角等基礎(chǔ)知識,考查空間想象能力、推理論證能力、運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想、函數(shù)與方程思想.19.(本題12分)數(shù)列{an}的前n項和為Sn,且Sn=n(n+1)(n∈N*).(1)求數(shù)列{an}的通項公式;(2)若數(shù)列{bn}滿足:求數(shù)列{bn}的通項公式;(3)令(n∈N*),求數(shù)列{cn}的前n項和Tn.參考答案:(1)當n=1時,a1=S1=2,當n≥2時,an=Sn-Sn-1=n(n+1)-(n-1)n=2n,知a1=2滿足該式∴數(shù)列{an}的通項公式為an=2n.故bn=2(3n+1)(n∈N*).(3)cn==n(3n+1)=n·3n+n,∴Tn=c1+c2+c3+…+cn=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n)令Hn=1×3+2×32+3×33+…+n×3n,①則3Hn=1×32+2×33+3×34+…+n×3n+1②①-②得,-2Hn=3+32+33+…+3n-n×3n+1=-n×3n+1∴Hn=。∴數(shù)列{cn}的前n項和Tn=+.20.(13分)已知橢圓E:(a>b>0)的一焦點F在拋物線y2=4x的準線上,且點M(1,)在橢圓上(I)求橢圓E的方程;(II)過直線x=-2上一點P作橢圓E的切線,切點為Q,證明:PF⊥QF。參考答案:(Ⅰ)拋物線的準線為,則,即.……2分又點在橢圓上,則,解得,

……4分故求橢圓的方程為.………………………5分(Ⅱ)設(shè)、.依題意可知切線的斜率存在,設(shè)為,則:,并代入到中,整理得:………………………8分因此,即.……………9分從而,,則;…………10分又,則,.…11分由于,故,即.………………13分21.如圖,在棱長為1的正方體ABCD—中,E是BC的中點,平面交于點F.(Ⅰ)指出點F在上的位置,并證明;(Ⅱ)判斷四邊形的形狀,并求其面積;(Ⅲ)求三棱錐的體積.參考答案:(本小題滿分12分)解:(Ⅰ)F為上的中點.證明如下:取上的中點F,連接DF,ED,,

平面交于的中點F.------------------4分(Ⅱ)由(Ⅰ)知平行四邊形.

又,,..

--------8分(Ⅲ)過F作與H,連結(jié)EH,則,且.

------12

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論