2024學(xué)年上海市師大附中高二上數(shù)學(xué)期末綜合測試試題含解析_第1頁
2024學(xué)年上海市師大附中高二上數(shù)學(xué)期末綜合測試試題含解析_第2頁
2024學(xué)年上海市師大附中高二上數(shù)學(xué)期末綜合測試試題含解析_第3頁
2024學(xué)年上海市師大附中高二上數(shù)學(xué)期末綜合測試試題含解析_第4頁
2024學(xué)年上海市師大附中高二上數(shù)學(xué)期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024學(xué)年上海市師大附中高二上數(shù)學(xué)期末綜合測試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若方程表示雙曲線,則()A. B.C. D.2.設(shè)平面向量,,其中m,,記“”為事件A,則事件A發(fā)生的概率為()A. B.C. D.3.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的體積為()A.8 B.16C. D.4.已知向量,若,則()A. B.5C.4 D.5.“”是“”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知數(shù)列中,,則()A. B.C. D.7.魯班鎖運(yùn)用了中國古代建筑中首創(chuàng)的榫卯結(jié)構(gòu),相傳由春秋時代各國工匠魯班所作,是由六根內(nèi)部有槽的長方形木條,按橫豎立三方向各兩根凹凸相對咬合一起,形成的一個內(nèi)部卯榫的結(jié)構(gòu)體.魯班鎖的種類各式各樣,千奇百怪.其中以最常見的六根和九根的魯班鎖最為著名.下圖1是經(jīng)典的六根魯班鎖及六個構(gòu)件的圖片,下圖2是其中的一個構(gòu)件的三視圖(圖中單位:mm),則此構(gòu)件的表面積為()A. B.C. D.8.丹麥數(shù)學(xué)家琴生(Jensen)是19世紀(jì)對數(shù)學(xué)分析作出卓越貢獻(xiàn)的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)恒成立,則稱函數(shù)在區(qū)間內(nèi)為“凸函數(shù)”,則下列函數(shù)在其定義域內(nèi)是“凸函數(shù)”的是()A. B.C. D.9.橢圓離心率是()A. B.C. D.10.在各項(xiàng)均為正數(shù)等比數(shù)列中,若成等差數(shù)列,則=()A. B.C. D.11.設(shè)是公比為的等比數(shù)列,則“”是“為遞增數(shù)列”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件12.平面與平面平行的充分條件可以是()A.平面內(nèi)有一條直線與平面平行B.平面內(nèi)有兩條直線分別與平面平行C.平面內(nèi)有無數(shù)條直線分別與平面平行D平面內(nèi)有兩條相交直線分別與平面平行二、填空題:本題共4小題,每小題5分,共20分。13.焦點(diǎn)在軸上的雙曲線的離心率為,則的值為___________.14.已知橢圓:的左右焦點(diǎn)分別為,為橢圓上的一點(diǎn),與橢圓交于.若△的內(nèi)切圓與線段在其中點(diǎn)處相切,與切于,則橢圓的離心率為_______15.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為點(diǎn),則___________.16.甲、乙兩名運(yùn)動員5場比賽得分的莖葉圖如圖所示,已知甲得分的極差為32,乙得分的平均值為24,則甲、乙兩組數(shù)據(jù)的中位數(shù)是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線過點(diǎn)(1)若直線與直線垂直,求直線的方程;(2)若直線在兩坐標(biāo)軸的截距相等,求直線的方程18.(12分)在數(shù)列中,,,且對任意的,都有.(1)數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列,求數(shù)列的前項(xiàng)和.19.(12分)已知函數(shù),.(1)若,求的最大值;(2)若,求證:有且只有一個零點(diǎn).20.(12分)已知拋物線的頂點(diǎn)為原點(diǎn),焦點(diǎn)F在x軸的正半軸,F(xiàn)到直線的距離為.點(diǎn)為此拋物線上的一點(diǎn),.直線l與拋物線交于異于N的兩點(diǎn)A,B,且.(1)求拋物線方程和N點(diǎn)坐標(biāo);(2)求證:直線AB過定點(diǎn),并求該定點(diǎn)坐標(biāo).21.(12分)已知命題:“,”,命題:“,”,若“且”為真命題,求實(shí)數(shù)的取值范圍22.(10分)已知拋物線的焦點(diǎn)為F,點(diǎn)在拋物線上,且在第一象限,的面積為(O為坐標(biāo)原點(diǎn)).(1)求拋物線的標(biāo)準(zhǔn)方程;(2)經(jīng)過點(diǎn)的直線與交于,兩點(diǎn),且,異于點(diǎn),若直線與的斜率存在且不為零,證明:直線與的斜率之積為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】根據(jù)曲線方程表示雙曲線方程有,即可求參數(shù)范圍.【題目詳解】由題設(shè),,可得.故選:C.2、D【解題分析】由向量的數(shù)量積公式結(jié)合古典概型概率公式得出事件A發(fā)生的概率.【題目詳解】由題意可知,即,因?yàn)樗械幕臼录灿蟹N,其中滿足的為,,只有1種,所以事件A發(fā)生的概率為.故選:D3、C【解題分析】畫出直觀圖,利用椎體體積公式進(jìn)行求解.【題目詳解】畫出直觀圖,為四棱錐A-BCDE,其中BC=4,BE=2,AE=2,且BE,AE,DE兩兩垂直,故體積為.故選:C4、B【解題分析】根據(jù)向量垂直列方程,化簡求得.【題目詳解】由于,所以.故選:B5、B【解題分析】因但6、D【解題分析】由數(shù)列的遞推公式依次去求,直到求出即可.【題目詳解】由,可得,,,故選:D.7、B【解題分析】由三視圖可知,該構(gòu)件是長為100,寬為20,高為20的長方體的上面的中間部分去掉一個長為40,寬為20,高為10的小長方體的一個幾何體,進(jìn)而求出表面積即可.【題目詳解】由三視圖可知,該構(gòu)件是長為100,寬為20,高為20的長方體的上面的中間部分去掉一個長為40,寬為20,高為10的小長方體的一個幾何體,如下圖所示,其表面積為:.故選:B.【題目點(diǎn)撥】本題考查幾何體的表面積的求法,考查三視圖,考查學(xué)生的空間想象能力與計算求解能力,屬于中檔題.8、B【解題分析】根據(jù)基本初等函數(shù)的導(dǎo)函數(shù)公式求各函數(shù)二階導(dǎo)函數(shù),判斷其在定義域上是否恒有,即可知正確選項(xiàng).【題目詳解】A:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;B:,則,故是“凸函數(shù)”;C:,則,故不是“凸函數(shù)”;D:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;故選:B9、C【解題分析】將方程轉(zhuǎn)化為橢圓的標(biāo)準(zhǔn)方程,求得a,c,再由離心率公式求得答案.【題目詳解】解:由得,所以,則,所以橢圓的離心率,故選:C.10、A【解題分析】利用等差中項(xiàng)的定義以及等比數(shù)列的通項(xiàng)公式即可求解.【題目詳解】設(shè)等比數(shù)列的公比為,∵成等差數(shù)列,∴,即,解得或(舍去),∴,故選:.11、D【解題分析】當(dāng)時,不是遞增數(shù)列;當(dāng)且時,是遞增數(shù)列,但是不成立,所以選D.考點(diǎn):等比數(shù)列12、D【解題分析】根據(jù)平面與平面平行的判定定理可判斷.【題目詳解】對A,若平面內(nèi)有一條直線與平面平行,則平面與平面可能平行或相交,故A錯誤;對B,若平面內(nèi)有兩條直線分別與平面平行,若這兩條直線平行,則平面與平面可能平行或相交,故B錯誤;對C,若平面內(nèi)有無數(shù)條直線分別與平面平行,若這無數(shù)條直線互相平行,則平面與平面可能平行或相交,故C錯誤;對D,若平面內(nèi)有兩條相交直線分別與平面平行,則根據(jù)平面與平面平行的判定定理可得平面與平面平行,故D正確.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】將雙曲線的方程化為標(biāo)準(zhǔn)式,可得出、,由此可得出關(guān)于的等式,即可解得的值.【題目詳解】雙曲線的標(biāo)準(zhǔn)方程為,由題意可得,則,,,所以,,解得.故答案為:.14、【解題分析】利用橢圓及三角形內(nèi)切圓的性質(zhì)可得、,結(jié)合等邊三角形的性質(zhì)得的大小,在△中應(yīng)用余弦定理得到a、c的齊次式,即可求離心率.【題目詳解】由題意知:由內(nèi)切圓的性質(zhì)得:,由橢圓的性質(zhì),而,∴,∴由內(nèi)切圓的性質(zhì)得:再由橢圓的性質(zhì),得:,由此,△為等邊三角形,可得,在△中,由余弦定理得:,解得,則,故答案為:.15、【解題分析】先利用關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)特征求出點(diǎn),再利用空間兩點(diǎn)間的距離公式即可求.【題目詳解】因?yàn)锽與關(guān)于原點(diǎn)對稱,故,所以.故答案為:.16、【解題分析】先由極差以及平均數(shù)得出,進(jìn)而得出中位數(shù).【題目詳解】由可得,,,因?yàn)橐业梅值钠骄禐?4,所以,所以甲、乙兩組數(shù)據(jù)的中位數(shù)是.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解題分析】(1)由兩條直線垂直可設(shè)直線的方程為,將點(diǎn)的坐標(biāo)代入計算即可;(2)當(dāng)直線過原點(diǎn)時,根據(jù)直線的點(diǎn)斜式方程即可得出結(jié)果;當(dāng)直線不過原點(diǎn)時可設(shè)直線的方程為,將點(diǎn)的坐標(biāo)代入計算即可.【小問1詳解】解:因?yàn)橹本€與直線垂直所以,設(shè)直線的方程為,因?yàn)橹本€過點(diǎn),所以,解得,所以直線的方程為【小問2詳解】解:當(dāng)直線過原點(diǎn)時,斜率為,由點(diǎn)斜式求得直線的方程是,即當(dāng)直線不過原點(diǎn)時,設(shè)直線的方程為,把點(diǎn)代入方程得,所以直線的方程是綜上,所求直線的方程為或18、(1);(2).【解題分析】(1)由遞推式可得,根據(jù)等比數(shù)列的定義寫出通項(xiàng)公式,再由累加法求的通項(xiàng)公式;(2)由(1)可得,再應(yīng)用裂項(xiàng)相消法求前項(xiàng)和【小問1詳解】由可得:,又,,∴,則數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,∴.∴.【小問2詳解】∵,∴∴.19、(1)(2)證明見解析【解題分析】(1)利用導(dǎo)數(shù)判斷原函數(shù)單調(diào)性,從而可求最值.(2)求導(dǎo)后發(fā)現(xiàn)導(dǎo)數(shù)中無參數(shù),故單調(diào)性與(1)中所求一致,然后利用零點(diǎn)存在定理結(jié)合的范圍,以及函數(shù)單調(diào)性證明在定義域內(nèi)有且只有一個零點(diǎn).【小問1詳解】若,則,其定義域?yàn)?,∴,由,得,∴?dāng)時,;當(dāng)時,,∴在上單調(diào)遞增,在上單調(diào)遞減,∴【小問2詳解】證明:,由(Ⅰ)知在上單調(diào)遞增,在上單調(diào)遞誠,∵,∴當(dāng)時,,故在上無零點(diǎn);當(dāng)時,,∵且,∴在上有且只有一個零點(diǎn).綜上,有且只有一個零點(diǎn).20、(1),(2)證明見解析,定點(diǎn)【解題分析】(1)設(shè)拋物線的標(biāo)準(zhǔn)方程為,利用點(diǎn)到直線距離公式可求出,再利用焦半徑公式可求出N點(diǎn)坐標(biāo);(2)設(shè)直線的方程為,與拋物線聯(lián)立,利用韋達(dá)定理計算,可得關(guān)系,然后代入直線方程可得定點(diǎn).【小問1詳解】設(shè)拋物線的標(biāo)準(zhǔn)方程為,,其焦點(diǎn)為則,∴所以拋物線的方程為.,所以,所以.因?yàn)椋?,所?【小問2詳解】由題意知,直線的斜率不為0,設(shè)直線的方程為(),聯(lián)立方程得設(shè)兩個交點(diǎn),(,).所以所以,即整理得,此時恒成立,此時直線l的方程為,可化為,從而直線過定點(diǎn).21、或【解題分析】先分別求出,為真時,的范圍;再求交集,即可得出結(jié)果.【題目詳解】若是真命題.則對任意恒成立,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論