版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
杭州第十三中學(xué)2024學(xué)年高二上數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等差數(shù)列滿足,,則()A. B.C. D.2.圓與圓公切線的條數(shù)為()A.1 B.2C.3 D.43.若拋物線y2=4x上一點(diǎn)P到x軸的距離為2,則點(diǎn)P到拋物線的焦點(diǎn)F的距離為()A.4 B.5C.6 D.74.設(shè)等差數(shù)列前n項(xiàng)和是,若,則的通項(xiàng)公式可以是()A. B.C. D.5.已知點(diǎn),,直線:與線段相交,則實(shí)數(shù)的取值范圍是()A.或 B.或C. D.6.已知條件:,條件:表示一個(gè)橢圓,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知集合,,則()A. B.C. D.8.設(shè)變量,滿足約束條件則的最小值為()A.3 B.-3C.2 D.-29.已知的展開式中,各項(xiàng)系數(shù)的和與其各項(xiàng)二項(xiàng)式系數(shù)的和之比為,則()A.4 B.5C.6 D.710.甲乙兩個(gè)雷達(dá)獨(dú)立工作,它們發(fā)現(xiàn)飛行目標(biāo)的概率分別是0.9和0.8,飛行目標(biāo)被雷達(dá)發(fā)現(xiàn)的概率為()A.0.72 B.0.26C.0.7 D.0.9811.定義在R上的偶函數(shù)在上單調(diào)遞增,且,則滿足的x的取值范圍是()A. B.C. D.12.正三棱錐的側(cè)面都是直角三角形,,分別是,的中點(diǎn),則與平面所成角的余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若“”是真命題,則實(shí)數(shù)的最小值為_____________.14.已知向量,,若,則實(shí)數(shù)m的值是___________.15.拋物線的準(zhǔn)線方程是,則實(shí)數(shù)___________.16.雙曲線的右頂點(diǎn)為A,右焦點(diǎn)為F,過(guò)點(diǎn)F平行于雙曲線的一條漸近線的直線與雙曲線交于點(diǎn)B,則的面積為__________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知直線l:2mx-y-8m-3=0和圓C:x2+y2-6x+12y+20=0.(1)m∈R時(shí),證明l與C總相交;(2)m取何值時(shí),l被C截得的弦長(zhǎng)最短?求此弦長(zhǎng)18.(12分)已知拋物線過(guò)點(diǎn),O為坐標(biāo)原點(diǎn)(1)求焦點(diǎn)的坐標(biāo)及其準(zhǔn)線方程;(2)拋物線C在點(diǎn)A處的切線記為l,過(guò)點(diǎn)A作與切線l垂直的直線,與拋物線C的另一個(gè)交點(diǎn)記為B,求的面積19.(12分)已知橢圓的左、右焦點(diǎn)分別為,過(guò)右焦點(diǎn)作直線交于,其中的周長(zhǎng)為的離心率為.(1)求的方程;(2)已知的重心為,設(shè)和的面積比為,求實(shí)數(shù)的取值范圍.20.(12分)已知二次函數(shù).(1)若時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.(2)解關(guān)于的不等式(其中).21.(12分)如圖,在四棱錐中,底面四邊形為角梯形,,,,O為的中點(diǎn),,.(1)證明:平面;(2)若,求平面與平面所成夾角的余弦值.22.(10分)已知函數(shù)(a是常數(shù)).(1)當(dāng)時(shí),求的單調(diào)區(qū)間與極值;(2)若,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】根據(jù)等差數(shù)列的通項(xiàng)公式求出公差,再結(jié)合即可得的值.【題目詳解】因?yàn)槭堑炔顢?shù)列,設(shè)公差為,所以,即,所以,所以,故選:D.2、D【解題分析】分別求出圓和圓的圓心和半徑,判斷出兩圓的位置關(guān)系可得到公切線的條數(shù).【題目詳解】根據(jù)題意,圓即,其圓心為,半徑;圓即,其圓心為,半徑;兩圓的圓心距,所以兩圓相離,其公切線條數(shù)有4條;故選:D.3、A【解題分析】根據(jù)拋物線y2=4x上一點(diǎn)P到x軸的距離為2,得到點(diǎn)P(3,±2),然后利用拋物線的定義求解.【題目詳解】由題意,知拋物線y2=4x的準(zhǔn)線方程為x=-1,∵拋物線y2=4x上一點(diǎn)P到x軸的距離為2,則P(3,±2),∴點(diǎn)P到拋物線的準(zhǔn)線的距離為3+1=4,∴點(diǎn)P到拋物線的焦點(diǎn)F的距離為4.故選:A.4、D【解題分析】根據(jù)題意可得公差的范圍,再逐一分析各個(gè)選項(xiàng)即可得出答案.【題目詳解】解:設(shè)等差數(shù)列的公差為,由,得,所以,故AB錯(cuò)誤;若,則,與題意矛盾,故C錯(cuò)誤;若,則,符合題意.故選:D.5、A【解題分析】由可求出直線過(guò)定點(diǎn),作出圖象,求出和,數(shù)形結(jié)合可得或,即可求解.【題目詳解】由可得:,由可得,所以直線:過(guò)定點(diǎn),由可得,作出圖象如圖所示:,,若直線與線段相交,則或,解得或,所以實(shí)數(shù)的取值范圍是或,故選:A.6、B【解題分析】根據(jù)曲線方程,結(jié)合充分、必要性的定義判斷題設(shè)條件間的關(guān)系.【題目詳解】由,若,則表示一個(gè)圓,充分性不成立;而表示一個(gè)橢圓,則成立,必要性成立.所以是的必要不充分條件.故選:B7、B【解題分析】根據(jù)根式、分式的性質(zhì)求定義域可得集合A,解一元二次不等式求集合B,再由集合的交運(yùn)算求.【題目詳解】∵,,∴故選:B8、D【解題分析】轉(zhuǎn)化為,則最小即直線在軸上的截距最大,作出不等式組表示的可行域,數(shù)形結(jié)合即得解【題目詳解】轉(zhuǎn)化為,則最小即直線在軸上的截距最大作出不等式組表示的可行域如圖中陰影部分所示,作出直線,平移該直線,當(dāng)直線經(jīng)過(guò)時(shí),在軸上的截距最大,最小,此時(shí),故選:D9、C【解題分析】利用賦值法確定展開式中各項(xiàng)系數(shù)的和以及二項(xiàng)式系數(shù)的和,利用比值為,列出關(guān)于的方程,解方程.【題目詳解】二項(xiàng)式的各項(xiàng)系數(shù)的和為,二項(xiàng)式的各項(xiàng)二項(xiàng)式系數(shù)的和為,因?yàn)楦黜?xiàng)系數(shù)的和與其各項(xiàng)二項(xiàng)式系數(shù)的和之比為,所以,.故選:C.10、D【解題分析】利用對(duì)立事件的概率求法求飛行目標(biāo)被雷達(dá)發(fā)現(xiàn)的概率.【題目詳解】由題設(shè),飛行目標(biāo)不被甲、乙發(fā)現(xiàn)的概率分別為、,所以飛行目標(biāo)被雷達(dá)發(fā)現(xiàn)的概率為.故選:D11、B【解題分析】,再根據(jù)函數(shù)的奇偶性和單調(diào)性可得或,解之即可得解.【題目詳解】解:,由題意可得或即或,解得或故選:B.12、C【解題分析】以P為原點(diǎn),PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標(biāo)系,利用向量法能求出PB與平面PEF所成角的正弦值.【題目詳解】∵正三棱錐的側(cè)面都是直角三角形,E,F(xiàn)分別是AB,BC的中點(diǎn),∴以P為原點(diǎn),PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標(biāo)系,設(shè),則,,,,,,,,設(shè)平面PEF的法向量,則,取,得,設(shè)PB與平面PEF所成角為,則,∴PB與平面PEF所成角的正弦值為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、1【解題分析】若“”是真命題,則大于或等于函數(shù)在的最大值因?yàn)楹瘮?shù)在上為增函數(shù),所以,函數(shù)在上的最大值為1,所以,,即實(shí)數(shù)的最小值為1.所以答案應(yīng)填:1.考點(diǎn):1、命題;2、正切函數(shù)的性質(zhì).14、【解題分析】結(jié)合已知條件和空間向量的數(shù)量積的坐標(biāo)公式即可求解.【題目詳解】因?yàn)?,所以,解?故答案為:.15、##【解題分析】將拋物線方程化為標(biāo)準(zhǔn)方程,根據(jù)其準(zhǔn)線方程即可求得實(shí)數(shù).【題目詳解】拋物線化為標(biāo)準(zhǔn)方程:,其準(zhǔn)線方程是,而所以,即,故答案為:16、【解題分析】由平行線的性質(zhì)求出斜率,由點(diǎn)斜式求出直線方程,然后求出交點(diǎn)坐標(biāo),由三角形面積公式可得結(jié)果.【題目詳解】雙曲線的右頂點(diǎn),右焦點(diǎn),,所以漸近線方程為,不妨設(shè)直線FB的方程為,將代入雙曲線方程整理,得,解得,,所以,所以故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2)當(dāng)時(shí),l被C截得的弦長(zhǎng)最短,最短弦長(zhǎng)為.【解題分析】(1)求出直線l的定點(diǎn),進(jìn)而判斷定點(diǎn)和圓C的位置關(guān)系,最后得到答案;(2)當(dāng)圓心C到直線l的距離最大時(shí),弦長(zhǎng)最短,進(jìn)而求出m,然后根據(jù)勾股定理求出弦長(zhǎng).【題目詳解】(1)直線l的方程可化為y+3=2m(x-4),則l過(guò)定點(diǎn)P(4,-3),由于42+(-3)2-6×4+12×(-3)+20=-15<0,所以點(diǎn)P在圓內(nèi),故直線l與圓C總相交(2)圓的C方程可化為:(x-3)2+(y+6)2=25,如圖所示,當(dāng)圓心C(3,-6)到直線l的距離最大時(shí),弦AB的長(zhǎng)度最短,此時(shí)PC⊥l,又,所以直線l的斜率為,則,在直角中,|PC|=,|AC|=5,所以|AB|=.故當(dāng)時(shí),l被C截得的弦長(zhǎng)最短,最短弦長(zhǎng)為.18、(1)焦點(diǎn),準(zhǔn)線方程;(2)12.【解題分析】(1)將點(diǎn)A坐標(biāo)代入求出,寫出拋物線方程即可作答.(2)由(1)的結(jié)論求出切線l的斜率,進(jìn)而求得直線AB方程,聯(lián)立直線AB與拋物線C的方程,求出弦AB長(zhǎng)及點(diǎn)O到直線AB距離計(jì)算作答.【小問(wèn)1詳解】依題意,,解得,則拋物線的方程為:,所以拋物線的焦點(diǎn),準(zhǔn)線方程為.【小問(wèn)2詳解】顯然切線l的斜率存在,設(shè)切線l的方程為:,由消去x并整理得:,依題意得,解得,因直線,則直線AB的斜率為-1,方程為:,即,由消去x并整理得:,解得,因此有,而,則,而點(diǎn)到直線AB:的距離,則,所以的面積是12.19、(1)(2)【解題分析】(1)已知焦點(diǎn)弦三角形的周長(zhǎng),以及離心率求橢圓方程,待定系數(shù)直接求解即可.(2)第一步設(shè)點(diǎn)設(shè)直線,第二步聯(lián)立方程韋達(dá)定理,第三步條件轉(zhuǎn)化,利用三角形等面積法,列方程,第四步利用韋達(dá)定理進(jìn)行轉(zhuǎn)化,計(jì)算即可.【小問(wèn)1詳解】因?yàn)榈闹荛L(zhǎng)為,的離心率為,所以,,所以,,又,所以橢圓的方程為.【小問(wèn)2詳解】方法一:,,的面積為,的面積為,則,得,①設(shè),與橢圓C方程聯(lián)立,消去得,由韋達(dá)定理得,.令,②則,可得當(dāng)時(shí),當(dāng)時(shí),所以,又解得③由①②③得,解得.所以實(shí)數(shù)的取值范圍是.方法二:同方法一可得的面積為,的面積為,則,得,①設(shè),與橢圓C方程聯(lián)立,消去得,由韋達(dá)定理得,.所以因?yàn)?,所以解得②由①②解?所以實(shí)數(shù)的取值范圍是.20、(1);(2)答案見(jiàn)解析.【解題分析】(1)結(jié)合分離常數(shù)法、基本不等式求得的取值范圍.(2)將原不等式轉(zhuǎn)化為,對(duì)進(jìn)行分類討論,由此求得不等式的解集.【題目詳解】(1)不等式即為:,當(dāng)時(shí),可變形為:,即.又,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,,即.實(shí)數(shù)的取值范圍是:.(2)不等式,即,等價(jià)于,即,①當(dāng)時(shí),不等式整理為,解得:;當(dāng)時(shí),方程的兩根為:,.②當(dāng)時(shí),可得,解不等式得:或;③當(dāng)時(shí),因?yàn)?,解不等式得:;④?dāng)時(shí),因?yàn)椋坏仁降慕饧癁?;⑤?dāng)時(shí),因?yàn)?,解不等式得:;綜上所述,不等式的解集為:①當(dāng)時(shí),不等式解集為;②當(dāng)時(shí),不等式解集為;③當(dāng)時(shí),不等式解集為;④當(dāng)時(shí),不等式解集為;⑤當(dāng)時(shí),不等式解集為.21、(1)證明見(jiàn)解析;(2).【解題分析】(1)連接,可通過(guò)證明,得平面;(2)以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,求出平面的法向量和平面的法向量,通過(guò)向量的夾角公式可得答案.【小問(wèn)1詳解】如圖,連接,在中,由可得.因?yàn)?,,所以,,因?yàn)?,,,所以,所?又因?yàn)?,平面,,所以平?【小問(wèn)2詳解】由(1)可知,,,兩兩垂直,以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,,,,.由,有,則,設(shè)平面的法向量為,由,,有,取,則,,可得平面的一個(gè)法向量為.設(shè)平
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度航空航天產(chǎn)業(yè)園廠房租賃協(xié)議書模板3篇
- 2024年數(shù)據(jù)中心通風(fēng)排煙系統(tǒng)安裝與網(wǎng)絡(luò)安全保障合同3篇
- 《廣東新大地生物科技有限公司財(cái)務(wù)造假審計(jì)識(shí)別案例研究》
- 2024年度石材出口許可合同
- 2024年度養(yǎng)老地產(chǎn)開發(fā)與銷售合作協(xié)議3篇
- 《以黃酮或其擬似骨架為Cap的亞型選擇性HDAC6抑制劑-設(shè)計(jì)、合成及生物活性評(píng)價(jià)》
- 2024年標(biāo)準(zhǔn)商場(chǎng)過(guò)戶合同版B版
- 個(gè)人安全違章的檢討書(5篇)
- 《從北方薩滿文化中汲取創(chuàng)作啟示》
- 2024版代駕公司代駕服務(wù)收費(fèi)標(biāo)準(zhǔn)協(xié)議書3篇
- Minitab培訓(xùn)教程課件
- 技術(shù)需求信息表
- 樂(lè)山大佛介紹課件
- 血透室運(yùn)用PDCA循環(huán)降低血透病人長(zhǎng)期深靜脈留置導(dǎo)管的感染率品管圈成果匯報(bào)
- 云南省昆明一中2024年高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題含解析
- 網(wǎng)絡(luò)安全攻防演練防守方方案
- 教育政策與法規(guī)全套完整教學(xué)課件
- 關(guān)注心靈快樂(lè)成長(zhǎng)心理健康教育主題班會(huì)
- 數(shù)胎動(dòng)那些事兒胎動(dòng)與胎兒安全孕婦學(xué)校課件PPT
- 沖刺高考主題班會(huì)
- 小型谷物烘干機(jī)設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論