黑龍江省望奎縣第二中學2024年數(shù)學高二上期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁
黑龍江省望奎縣第二中學2024年數(shù)學高二上期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁
黑龍江省望奎縣第二中學2024年數(shù)學高二上期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁
黑龍江省望奎縣第二中學2024年數(shù)學高二上期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁
黑龍江省望奎縣第二中學2024年數(shù)學高二上期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省望奎縣第二中學2024年數(shù)學高二上期末學業(yè)質量監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線內(nèi)一點,過點的直線交拋物線于,兩點,且點為弦的中點,則直線的方程為()A. B.C D.2.如圖,在三棱錐中,兩兩垂直,且,點E為中點,若直線與所成的角為,則三棱錐的體積等于()A. B.C.2 D.3.若,則()A.0 B.1C. D.24.已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動圓M同時與圓C1及圓C2相外切,求動圓圓心M的軌跡方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=15.在空間直角坐標系中,若,,則()A. B.C. D.6.雙曲線的焦距是()A.4 B.C.8 D.7.如圖,空間四邊形OABC中,,,,點M在上,且,點N為BC中點,則()A. B.C. D.8.若,滿足約束條件則的最大值是A.-8 B.-3C.0 D.19.若在1和16中間插入3個數(shù),使這5個數(shù)成等比數(shù)列,則公比為()A. B.2C. D.410.直線的傾斜角,則其斜率的取值范圍為()A. B.C. D.11.已知橢圓與雙曲線有相同的焦點,則的值為A. B.C. D.12.設為可導函數(shù),且滿足,則曲線在點處的切線的斜率是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)恰有兩個極值點,則k的取值范圍是______14.某學校為了獲得該校全體高中學生的體有鍛煉情況,按照男、女生的比例分別抽樣調查了55名男生和45名女生的每周鍛煉時間,通過計算得到男生每周鍛煉時間的平均數(shù)為8小時,方差為6;女生每周鍛煉時間的平均數(shù)為6小時,方差為8.根據(jù)所有樣本的方差來估計該校學生每周鍛煉時間的方差為________15.已知直線與圓相切,則__________.16.橢圓的左、右焦點分別為,,為坐標原點,則以下說法正確的是()A.過點的直線與橢圓交于,兩點,則的周長為8B.橢圓上存在點,使得C.橢圓的離心率為D.為橢圓上一點,為圓上一點,則點,的最大距離為3三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)雙曲線(,)的離心率,且過點.(1)求a,b的值;(2)求與雙曲線C有相同漸近線,且過點的雙曲線的標準方程.18.(12分)已知函數(shù)(1)求函數(shù)的單調區(qū)間;(2)求函數(shù)在區(qū)間上的值域19.(12分)如圖,在四棱錐中,底面為直角梯形,平面平面,,.(1)證明:平面;(2)已知,,,且直線與平面所成角的正弦值為,求平面與平面夾角的余弦值.20.(12分)2021年國慶期間,某電器商場為了促銷,給出了兩種優(yōu)惠方案,顧客只能選擇其中的一種,方案一:每消費滿8千元,可減8百元.方案二:消費金額超過8千元(含8千元),可抽取小球三次,其規(guī)則是依次從裝有2個紅色小球、2個黃色小球的一號箱子,裝有2個紅色小球、2個黃色小球的二號箱子,裝有1個紅色小球、3個黃色小球的三號箱子各抽一個小球(這些小球除顏色外完全相同),其優(yōu)惠情況為:若抽出3個紅色小球則打6折;若抽出2個紅色小球則打7折;若抽出1個紅色小球則打8折;若沒有抽出紅色小球則不打折.(1)若有兩名顧客恰好消費8千元,他們都選中第二方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;(2)若你朋友在該商場消費了1萬元,請用所學知識幫助你朋友分析一下應選擇哪種付款方案.21.(12分)已知數(shù)列的首項,其前n項和為,且滿足.(1)求數(shù)列的通項公式;(2)設,數(shù)列的前n項和為,且,求n.22.(10分)如圖,ABCD是邊長為2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF=2(1)證明:AC∥平面BEF;(2)求點C到平面BEF的距離

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】利用點差法求出直線斜率,即可得出直線方程.【題目詳解】設,則,兩式相減得,即,則直線方程為,即.故選:B.2、D【解題分析】由題意可證平面,取BD的中點F,連接EF,則為直線與所成的角,利用余弦定理求出,根據(jù)三棱錐體積公式即可求得體積【題目詳解】如圖,∵,點為的中點,∴,,∵,,兩兩垂直,,∴平面,取BD的中點F,連接EF,∴為直線與所成的角,且,由題意可知,,設,連接AF,則,在中,由余弦定理,得,即,解得,即∴三棱錐的體積故選:3、D【解題分析】由復數(shù)的乘方運算求,再求模即可.【題目詳解】由題設,,故2.故選:D4、A【解題分析】根據(jù)雙曲線定義求解【題目詳解】,則根據(jù)雙曲線定義知的軌跡為的左半支故選:A第II卷(非選擇題5、B【解題分析】直接利用空間向量的坐標運算求解.【題目詳解】解:因為,,所以.故選:B6、C【解題分析】根據(jù),先求半焦距,再求焦距即可.【題目詳解】解:由題意可得,,∴,故選:C【題目點撥】考查求雙曲線的焦距,基礎題.7、B【解題分析】利用空間向量運算求得正確答案.【題目詳解】.故選:B8、C【解題分析】作出可行域,把變形為,平移直線過點時,最大.【題目詳解】作出可行域如圖:由得:,作出直線,平移直線過點時,.故選C.【題目點撥】本題主要考查了簡單線性規(guī)劃問題,屬于中檔題.9、A【解題分析】根據(jù)等比數(shù)列的通項得:,從而可求出.【題目詳解】解:成等比數(shù)列,∴根據(jù)等比數(shù)列的通項得:,,故選:A.10、B【解題分析】根據(jù)傾斜角和斜率的關系,確定正確選項.【題目詳解】直線的傾斜角為,則斜率為,在上為增函數(shù).由于直線的傾斜角,所以其斜率的取值范圍為,即.故選:B【題目點撥】本小題主要考查傾斜角和斜率的關系,屬于基礎題.11、C【解題分析】根據(jù)題意可知,結合的條件,可知,故選C考點:橢圓和雙曲線性質12、D【解題分析】由題,為可導函數(shù),,即曲線在點處的切線的斜率是,選D【題目點撥】本題考查導數(shù)的定義,切線的斜率,以及極限的運算,本題解題的關鍵是對所給的極限式進行整理,得到符合導數(shù)定義的形式二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】求導得有兩個極值點等價于函數(shù)有一個不等于1的零點,分離參數(shù)得,令,利用導數(shù)研究的單調性并作出的圖象,根據(jù)圖象即可得出k的取值范圍【題目詳解】函數(shù)的定義域為,,令,解得或,若函數(shù)有2個極值點,則函數(shù)與圖象在上恰有1個橫坐標不為1的交點,而,令,令或,故在和上單調遞減,在上單調遞增,又,如圖所示,由圖可得.故答案為:14、【解題分析】先求出100名學生每周鍛煉的平均時間,然后再求這100名學生每周鍛煉時間的方差,從而可估計該校學生每周鍛煉時間的方差【題目詳解】由題意可得55名男生和45名女生的每周鍛煉時間的平均數(shù)為小時,因為55名男生每周鍛煉時間的方差為6;45名女生每周鍛煉時間的方差為8,所以這100名學生每周鍛煉時間的方差為,所以該校學生每周鍛煉時間的方差約為,故答案為:15、【解題分析】由直線與圓相切,結合點到直線的距離公式求解即可.【題目詳解】由直線與圓相切,所以圓心到直線l的距離等于半徑r,即.故答案為:16、ABD【解題分析】結合橢圓定義判斷A選項的正確性,結合向量數(shù)量積的坐標運算判斷B選項的正確性,直接法求得橢圓的離心率,由此判斷C選項的正確性,結合兩點間距離公式判斷D選項的正確性.【題目詳解】對于選項:由橢圓定義可得:,因此的周長為,所以選項正確;對于選項:設,則,且,又,,所以,,因此,解得,,故選項正確;對于選項:因為,,所以,即,所以離心率,所以選項錯誤;對于選項:設,,則點到圓的圓心的距離為,因為,所以,所以選項正確,故選:ABD三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解題分析】(1)根據(jù)已知條件建立關于a、b、c的方程組可解;(2)巧設與已知雙曲線同漸近線的雙曲線方程為可得.【小問1詳解】因為離心率,所以.又因為點在雙曲線C上,所以.聯(lián)立上述方程,解得,,即,.【小問2詳解】設所求雙曲線的方程為,由雙曲線經(jīng)過點,得,即.所以雙曲線的方程為,其標準方程為.18、(1)單調遞增區(qū)間為,單調遞減區(qū)間為;(2)【解題分析】(1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間即可;(2)根據(jù)函數(shù)的單調性求出函數(shù)的極值點,從而求出函數(shù)的最值即可【題目詳解】解:(1)由題意得,,令,得,令,得或,故函數(shù)的單調遞增區(qū)間為,單調遞減區(qū)間為(2)易知,因為,所以(或由,可得),又當時,,所以函數(shù)在區(qū)間上的值域為【題目點撥】確定函數(shù)單調區(qū)間的步驟:第一步,確定函數(shù)的定義域;第二步,求;第三步,解不等式,解集在定義域內(nèi)的部分為單調遞增區(qū)間;解不等式,解集在定義域內(nèi)的部分為單調遞減區(qū)間19、(1)證明過程見解析;(2).【解題分析】(1)利用平面與平面垂直的性質得出直線與平面垂直,進而得出平面;(2)建立空間直角坐標系即可求解.【小問1詳解】證明:因為平面平面,交線為且平面中,所以平面又平面所以又,且所以平面【小問2詳解】解:由(1)知,平面且所以、、兩兩垂直因此以原點,建立如圖所示的空間直角坐標系因為,,,設所以,,,,由(1)知,平面所以為平面的法向量且因為直線與平面所成角的正弦值為所以解得:所以,又,,所以,,,設平面與平面的法向量分別為:,所以,令,則令,則,,即設平面與平面夾角為則所以平面與平面夾角的余弦值為.20、(1)(2)選擇方案二更劃算【解題分析】(1)要使方案二比方案一優(yōu)惠,則需要抽出至少一個紅球,求出沒有抽出紅色小球的概率,再根據(jù)對立事件的概率公式即可得出答案;(2)若選擇方案一,則需付款(元),若選擇方案二,設付款金額為元,則可取6000,7000,8000,10000,求出對應概率,從而可求得的期望,在比較的期望與9200的大小即可得出結論.【小問1詳解】解:根據(jù)題意得要使方案二比方案一優(yōu)惠,則需要抽出至少一個紅球,設沒有抽出紅色小球為事件,則,所以所求概率;【小問2詳解】解:若選擇方案一,則需付款(元),若選擇方案二,設付款金額為元,則可取6000,7000,8000,10000,,,,,故的分布列為X60007000800010000P所以(元),因為,所以選擇方案二更劃算.21、(1)(2)【解題分析】(1)由條件得,則利用等差數(shù)列的定義可得答案;(2)利用裂項求和求出,再根據(jù)可求出n.【小問1詳解】由得,從而數(shù)列是以1為首項,1為公差的等差數(shù)列,所以;【小問2詳解】由(1)得,由得又,所以.22、(1)證明見解析(2)【解題分析】(1)建立空間直角坐標系,進而求出平面BEF的法向量,然后證明線面平行;(2)算出在向量方向上的投影,進而求得答案.【小問1詳解】因為DE⊥平面ABCD,DA、DC平面ABC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論