2024學(xué)年江蘇省揚(yáng)州市廣陵區(qū)揚(yáng)州中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第1頁(yè)
2024學(xué)年江蘇省揚(yáng)州市廣陵區(qū)揚(yáng)州中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第2頁(yè)
2024學(xué)年江蘇省揚(yáng)州市廣陵區(qū)揚(yáng)州中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第3頁(yè)
2024學(xué)年江蘇省揚(yáng)州市廣陵區(qū)揚(yáng)州中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第4頁(yè)
2024學(xué)年江蘇省揚(yáng)州市廣陵區(qū)揚(yáng)州中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024學(xué)年江蘇省揚(yáng)州市廣陵區(qū)揚(yáng)州中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.彬塔,又稱開(kāi)元寺塔、彬縣塔,民間稱“雷峰塔”,位于陜西省彬縣城內(nèi)西南紫薇山下.某同學(xué)為測(cè)量彬塔的高度,選取了與塔底在同一水平面內(nèi)的兩個(gè)測(cè)量基點(diǎn)與,現(xiàn)測(cè)得,,,在點(diǎn)測(cè)得塔頂?shù)难鼋菫?0°,則塔高()A.30m B.C. D.2.在等比數(shù)列中,,是方程的兩個(gè)實(shí)根,則()A.-1 B.1C.-3 D.33.三等分角是“古希臘三大幾何問(wèn)題”之一,數(shù)學(xué)家帕普斯巧妙地利用圓弧和雙曲線解決了這個(gè)問(wèn)題.如圖,在圓D中,為其一條弦,,C,O是弦的兩個(gè)三等分點(diǎn),以A為左焦點(diǎn),B,C為頂點(diǎn)作雙曲線T.設(shè)雙曲線T與弧的交點(diǎn)為E,則.若T的方程為,則圓D的半徑為()A. B.1C.2 D.4.三個(gè)實(shí)數(shù)構(gòu)成一個(gè)等比數(shù)列,則圓錐曲線的離心率為()A. B.C.或 D.或5.直線被圓截得的弦長(zhǎng)為()A.1 B.C.2 D.36.已知平面,的法向量分別為,,則()A. B.C.,相交但不垂直 D.,的位置關(guān)系不確定7.拋物線的焦點(diǎn)到準(zhǔn)線的距離是A.2 B.4C. D.8.設(shè)為等差數(shù)列的前項(xiàng)和,若,則的值為()A.14 B.28C.36 D.489.若將雙曲線繞其對(duì)稱中心順時(shí)針旋轉(zhuǎn)120°后可得到某一函數(shù)的圖象,且該函數(shù)在區(qū)間上存在最小值,則雙曲線C的離心率為()A. B.C.2 D.10.在等差數(shù)列中,若,,則公差d=()A. B.C.3 D.-311.下列求導(dǎo)不正確的是()A B.C. D.12.已知雙曲線的左、右焦點(diǎn)分別為,點(diǎn)A在雙曲線上,且軸,若則雙曲線的離心率等于()A. B.C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.直線被圓所截得的弦的長(zhǎng)為_(kāi)____14.圓錐的母線長(zhǎng)為2,母線所在直線與圓錐的軸所成角為,則該圓錐的側(cè)面積大小為_(kāi)___________.(結(jié)果保留)15.若圓的一條直徑的端點(diǎn)是、,則此圓的方程是_______16.以點(diǎn)為圓心,為半徑的圓的標(biāo)準(zhǔn)方程是_____________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,,其中.(1)求的值;(2)設(shè)(其中、為正整數(shù)),求的值.18.(12分)在數(shù)列中,,且.(1)證明;數(shù)列是等比數(shù)列.(2)若,求數(shù)列的前n項(xiàng)和.19.(12分)如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC//AD,AD=2BC=2PA=2AB=2,E,F(xiàn),G分別為線段AD,DC,PB的中點(diǎn).(1)證明:直線PF//平面ACG;(2)求直線PD與平面ACG所成角的正弦值.20.(12分)已知的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且(1)求;(2)若,求的面積的最大值21.(12分)如圖,水平桌面上放置一個(gè)棱長(zhǎng)為4的正方體的水槽,水面高度恰為正方體棱長(zhǎng)的一半,在該正方體側(cè)面有一個(gè)小孔(小孔的大小忽略不計(jì))E,E點(diǎn)到CD的距離為3,若該正方體水槽繞CD傾斜(CD始終在桌面上).(1)證明圖2中的水面也是平行四邊形;(2)當(dāng)水恰好流出時(shí),側(cè)面與桌面所成的角的大小.22.(10分)已知?jiǎng)狱c(diǎn)到點(diǎn)的距離與點(diǎn)到直線的距離相等.(1)求動(dòng)點(diǎn)的軌跡方程;(2)若過(guò)點(diǎn)且斜率為的直線與動(dòng)點(diǎn)的軌跡交于、兩點(diǎn),求三角形AOB的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】在△中有,再應(yīng)用正弦定理求,再在△中,即可求塔高.【題目詳解】由題設(shè)知:,又,△中,可得,在△中,,則.故選:D2、B【解題分析】由韋達(dá)定理可知,結(jié)合等比中項(xiàng)的性質(zhì)可求出.【題目詳解】解:在等比數(shù)列中,由題意知:,,所以,,所以且,即.故選:B.3、C【解題分析】由題設(shè)寫出雙曲線的方程,對(duì)比系數(shù),求出即可獲解【題目詳解】由題知所以雙曲線的方程為又由題設(shè)的方程為,所以,即設(shè)AB的中點(diǎn)為,則由.所以,即圓的半徑為2故選:C4、D【解題分析】根據(jù)三個(gè)實(shí)數(shù)構(gòu)成一個(gè)等比數(shù)列,解得,然后分,討論求解.【題目詳解】因?yàn)槿齻€(gè)實(shí)數(shù)構(gòu)成一個(gè)等比數(shù)列,所以,解得,當(dāng)時(shí),方程表示焦點(diǎn)在x軸上的橢圓,所以,所以,當(dāng)時(shí),方程表示焦點(diǎn)在y軸上的雙曲線,所以,所以,故選:D5、C【解題分析】利用直線和圓相交所得的弦長(zhǎng)公式直接計(jì)算即可.【題目詳解】由題意可得圓的圓心為,半徑,則圓心到直線的距離,所以由直線和圓相交所得的弦長(zhǎng)公式可得弦長(zhǎng)為:.故選:C.6、C【解題分析】利用向量法判斷平面與平面的位置關(guān)系.【題目詳解】因?yàn)槠矫?,的法向量分別為,,所以,即不垂直,則,不垂直,因?yàn)?,即即不平行,則,不平行,所以,相交但不垂直,故選:C7、D【解題分析】因?yàn)閽佄锞€方程可化為,所以拋物線的焦點(diǎn)到準(zhǔn)線的距離是,故選D.考點(diǎn):1、拋物線的標(biāo)準(zhǔn)方程;2、拋物線的幾何性質(zhì).8、D【解題分析】利用等差數(shù)列的前項(xiàng)和公式以及等差數(shù)列的性質(zhì)即可求出.【題目詳解】因?yàn)闉榈炔顢?shù)列的前項(xiàng)和,所以故選:D【題目點(diǎn)撥】本題考查了等差數(shù)列的前項(xiàng)和公式的計(jì)算以及等差數(shù)列性質(zhì)的應(yīng)用,屬于較易題.9、C【解題分析】由題意,可知雙曲線的一條漸近線的傾斜角為120°,再確定參數(shù)的正負(fù)即可求解.【題目詳解】雙曲線,令,則,顯然,則一條漸近線方程為,繞其對(duì)稱中心順時(shí)針旋轉(zhuǎn)120°后可得到某一函數(shù)的圖象,則漸近線就需要旋轉(zhuǎn)到與坐標(biāo)軸重合,故漸近線方程的傾斜角為120°,即,該函數(shù)在區(qū)間上存在最小值,可知,所以,所以.故選:C10、C【解題分析】由等差數(shù)列的通項(xiàng)公式計(jì)算【題目詳解】因?yàn)?,,所?故選:C【題目點(diǎn)撥】本題考查等差數(shù)列的通項(xiàng)公式,利用等差數(shù)列通項(xiàng)公式可得,11、C【解題分析】由導(dǎo)數(shù)的運(yùn)算法則、復(fù)合函數(shù)的求導(dǎo)法則計(jì)算后可判斷【題目詳解】A:;B:;C:;D:故選:C12、B【解題分析】由雙曲線定義結(jié)合通徑公式、化簡(jiǎn)得出,最后得出離心率.【題目詳解】,,,解得故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】圓轉(zhuǎn)化為標(biāo)準(zhǔn)式方程,圓心到直線的距離為,圓的半徑為,因此所求弦長(zhǎng)為考點(diǎn):1.圓的方程;2.直線被圓截得的弦長(zhǎng)的求法;14、【解題分析】由題設(shè)知:圓錐的軸截面為等邊三角形,進(jìn)而求圓錐的底面周長(zhǎng),由扇形面積公式求圓錐的側(cè)面積大小.【題目詳解】由題設(shè),圓錐的軸截面為等邊三角形,又圓錐的母線長(zhǎng)為2,∴底面半徑為1,則底面周長(zhǎng)為,∴圓錐的側(cè)面積大小為.故答案為:.15、【解題分析】先設(shè)圓上任意一點(diǎn)的坐標(biāo),然后利用直徑對(duì)應(yīng)的圓周角為直角,再利用向量垂直建立方程即可【題目詳解】設(shè)圓上任意一點(diǎn)的坐標(biāo)為可得:,則有:,即解得:故答案為:16、【解題分析】直接根據(jù)已知寫出圓的標(biāo)準(zhǔn)方程得解.【題目詳解】解:由題得圓的標(biāo)準(zhǔn)方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解題分析】(1),,寫出的展開(kāi)式通項(xiàng),由可得出關(guān)于的方程,解出的值,再利用賦值法可求得所求代數(shù)式的值;(2)寫出的展開(kāi)式,求出、的值,即可求得的值.【小問(wèn)1詳解】解:設(shè),,的展開(kāi)式通項(xiàng)為,所以,,即,,解得,所以,.【小問(wèn)2詳解】解:,,,因此,18、(1)證明見(jiàn)解析;(2).【解題分析】(1)根據(jù)遞推公式,結(jié)合等差數(shù)列的定義、等比數(shù)列的定義進(jìn)行證明即可;(2)運(yùn)用裂項(xiàng)相消法進(jìn)行求解即可.【小問(wèn)1詳解】∵,∴,又∵,∴,∴數(shù)列是首項(xiàng)為0,公差為1的等差數(shù)列,∴,∴,從而,∴數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列;【小問(wèn)2詳解】由(1)知,則,∴,∴.19、(1)證明見(jiàn)解析(2)【解題分析】(1)連接EC,設(shè)EB與AC相交于點(diǎn)O,結(jié)合已知條件利用線面平行的判定定理可證得OG//平面PEF,再由三角形中位線定理結(jié)合線面垂直的判定定理可得AC//平面PEF,從而由面面垂直的判定可得平面PEF//平面GAC,進(jìn)而可證得結(jié)論,(2)由已知可證得PA、AB、AD兩兩互相垂直,以A為原點(diǎn),AB,AD,AP所在的直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用空間向量求解即可【小問(wèn)1詳解】證明:連接EC,設(shè)EB與AC相交于點(diǎn)O,如圖,因?yàn)锽C//AD,且,AB⊥AD,所以四邊形ABCE為矩形,所以O(shè)為EB的中點(diǎn),又因?yàn)镚為PB的中點(diǎn),所以O(shè)G為△PBE的中位線,即OG∥PE,因?yàn)镺G平面PEF,PE?平面PEF,所以O(shè)G//平面PEF,因?yàn)镋,F(xiàn)分別為線段AD,DC的中點(diǎn),所以EF//AC,因?yàn)锳C平面PEF,EF?平面PEF,所以AC//平面PEF,因?yàn)镺G?平面GAC,AC?平面GAC,AC∩OG=O,所以平面PEF//平面GAC,因?yàn)镻F?平面PEF,所以PF//平面GAC.【小問(wèn)2詳解】因?yàn)镻A⊥底面ABCD,AB?平面ABCD,AD?平面ABCD,所以PA⊥AB,PA⊥AD,因?yàn)锳B⊥AD,所以PA、AB、AD兩兩互相垂直,以A為原點(diǎn),AB,AD,AP所在的直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,如圖所示:則A(0,0,0),,C(1,1,0),D(0,2,0),P(0,0,1),所以,設(shè)平面ACG的法向量為,則,所以,令x=1,可得y=﹣1,z=﹣1,所以,設(shè)直線PD與平面ACG所成角為θ,則,所以直線PD與平面ACG所成角的正弦值為.20、(1)(2)【解題分析】(1)由正弦定理將邊化為角,結(jié)合三角函數(shù)的兩角和的正弦公式,可求得答案;(2)由余弦定理結(jié)合基本不等式可求得,再利用三角形面積公式求得答案.【小問(wèn)1詳解】由正弦定理及,得,∵∴,∵,∴【小問(wèn)2詳解】由余弦定理,∴,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),∴,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴的面積的最大值為21、(1)證明見(jiàn)解析(2)【解題分析】(1)由水的體積得出,進(jìn)而得出,,從而證明圖2中的水面也是平行四邊形;(2)在平面內(nèi),過(guò)點(diǎn)作,交于,由四邊形是平行四邊形,得出側(cè)面與桌面所成的角即側(cè)面與水面所成的角,再由直角三角形的邊角關(guān)系得出其夾角.【小問(wèn)1詳解】由題意知,水的體積為,如圖所示,設(shè)正方體水槽傾斜后,水面分別與棱,,,交于,,,,則,水的體積為,,即,,故四邊形為平行四邊形,即,且又,,,四邊形為平行四邊形,即圖2中的水面也是平行四邊形;【小問(wèn)2詳解】在平面內(nèi),過(guò)點(diǎn)作,交于,則四邊形是平行四邊

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論