2024學年安徽省合肥市廬陽區(qū)第六中學高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第1頁
2024學年安徽省合肥市廬陽區(qū)第六中學高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第2頁
2024學年安徽省合肥市廬陽區(qū)第六中學高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第3頁
2024學年安徽省合肥市廬陽區(qū)第六中學高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第4頁
2024學年安徽省合肥市廬陽區(qū)第六中學高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024學年安徽省合肥市廬陽區(qū)第六中學高二數(shù)學第一學期期末聯(lián)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若命題為“,”,則為()A., B.,C., D.,2.已知隨圓與雙曲線相同的焦點,則橢圓和雙曲線的離心,分別為()A. B.C. D.3.《九章算術》是我國古代內(nèi)容極為豐富的數(shù)學名著,第九章“勾股”,講述了“勾股定理”及一些應用,直角三角形的兩直角邊與斜邊的長分別稱“勾”“股”“弦”,且“”.設分別是雙曲線的左、右焦點,直線交雙曲線左、右兩支于兩點,若恰好是的“勾”“股”,則此雙曲線的離心率為()A. B.C.2 D.4.用1,2,3,4這4個數(shù)字可寫出()個沒有重復數(shù)字的三位數(shù)A.24 B.12C.81 D.645.已知雙曲線的虛軸長是實軸長的2倍,則實數(shù)的值是A. B.C. D.6.《九章算術》是我國古代的數(shù)學巨著,書中有如下問題:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次漸多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(大夫爵位最高,爵位依次從高變低)5個人共出100錢,按照爵位從高到低每人所出錢數(shù)成等差數(shù)列,問這5個人各出多少錢?”在這個問題中,若公士出28錢,則不更出的錢數(shù)為()A.14 B.20C.18 D.167.已知數(shù)列的前n項和為,,,則=()A. B.C. D.8.已知某班有學生48人,為了解該班學生視力情況,現(xiàn)將所有學生隨機編號,用系統(tǒng)抽樣的方法抽取一個容量為4的樣本已知3號,15號,39號學生在樣本中,則樣本中另外一個學生的編號是()A.26 B.27C.28 D.299.已知等差數(shù)列的前n項和為,公差,若(,),則()A.2024 B.2022C.2021 D.202010.已知等差數(shù)列的前項和為,,,當取最大時的值為()A. B.C. D.11.如圖,在平行六面體中,M為與的交點,若,,,則下列向量中與相等的向量是()A. B.C. D.12.設,則曲線在點處的切線的傾斜角是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,滿足約束條件,則的最小值為______.14.已知雙曲線的左、右焦點分別為、,直線與的左、右支分別交于點、(、均在軸上方).若直線、的斜率均為,且四邊形的面積為,則__________.15.若直線與雙曲線的右支交于不同的兩點,則的取值范圍__________16.已知數(shù)列的通項公式為,記數(shù)列的前項和為,則__________,的最小值為__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,,.(1)求點B到平面PCD的距離;(2)求二面角的平面角的余弦值.18.(12分)已知數(shù)列的前n項和為,且.(1)求數(shù)列的通項公式;(2)若,設,求數(shù)列的前n項和.19.(12分)已知橢圓的左、右焦點分別是,,離心率為,過且垂直于x軸的直線被橢圓C截得的線段長為1(1)求橢圓C方程;(2)設點P在直線上,過點P的兩條直線分別交曲線C于A,B兩點和M,N兩點,且,求直線AB的斜率與直線MN的斜率之和20.(12分)已知拋物線,過點作直線(1)若直線的斜率存在,且與拋物線只有一個公共點,求直線的方程(2)若直線過拋物線的焦點,且交拋物線于兩點,求弦長21.(12分)已知橢圓經(jīng)過點,且離心率為(1)求橢圓C的標準方程;(2)已知點A,B是橢圓C的上,下頂點,點P是直線上的動點,直線PA與橢圓C的另一交點為E,直線PB與橢圓C的另一交點為F.證明:直線EF過定點22.(10分)已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù))(1)求的值;(2)是否存在常數(shù),使得對于定義域內(nèi)的任意,恒成立?若存在,求出的值;若不存在,請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】特稱命題的否定是全稱命題,把存在改為任意,把結(jié)論否定.【題目詳解】“,”的否命題為“,”,故選:B2、B【解題分析】設公共焦點為,推導出,可得出,進而可求得、的值.【題目詳解】設公共焦點為,則,則,即,故,即,,故選:B3、A【解題分析】根據(jù)雙曲線的定義及直角三角形斜邊的中線定理,再結(jié)合雙曲線的離心率公式即可求解.【題目詳解】如圖所示由題意可知,根據(jù)雙曲線的定義知,是的中點且.在中,是的中點,所以,因為直線的斜率為,所以,所以.所以是等邊三角形,.在中,.由雙曲線的定義,得,所以雙曲線的離心率為.故選:A.4、A【解題分析】由題意,從4個數(shù)中選出3個數(shù)出來全排列即可.【題目詳解】由題意,從4個數(shù)中選出3個數(shù)出來全排列,共可寫出個三位數(shù).故選:A5、C【解題分析】由方程表示雙曲線知,又雙曲線的虛軸長是實軸長的2倍,所以,即,所以故選C.考點:雙曲線的標準方程與簡單幾何性質(zhì).6、D【解題分析】根據(jù)題意,建立等差數(shù)列模型,結(jié)合等差數(shù)列公式求解即可.【題目詳解】解:根據(jù)題意,設每人所出錢數(shù)成等差數(shù)列,公差為,前項和為,則由題可得,解得,所以不更出的錢數(shù)為.故選:D.7、D【解題分析】利用公式計算得到,得到答案【題目詳解】由已知得,即,而,所以故選:D8、B【解題分析】由系統(tǒng)抽樣可知抽取一個容量為4的樣本時,將48人按順序平均分為4組,由已知編號可得所求的學生來自第三組,設其編號為,則,進而求解即可【題目詳解】由系統(tǒng)抽樣可知,抽取一個容量為4的樣本時,將48人分為4組,第一組編號為1號至12號;第二組編號為13號至24號;第三組編號為25號至36號;第四組編號為37號至48號,故所求的學生來自第三組,設其編號為,則,所以,故選:B【題目點撥】本題考查系統(tǒng)抽樣的編號,屬于基礎題9、C【解題分析】根據(jù)題意令可得,結(jié)合等差數(shù)列前n項和公式寫出,進而得到關于的方程,解方程即可.【題目詳解】因為,令,得,又,,所以,有,解得.故選:C10、B【解題分析】由已知條件及等差數(shù)列通項公式、前n項和公式求基本量,再根據(jù)等差數(shù)列前n項和的函數(shù)性質(zhì)判斷取最大時的值.【題目詳解】令公差為,則,解得,所以,當時,取最大值.故選:B11、A【解題分析】利用空間向量的三角形法則可得,結(jié)合平行六面體的性質(zhì)分析解答【題目詳解】平行六面體中,M為與的交點,,,,則有:,所以.故選:A12、C【解題分析】根據(jù)導數(shù)的概念可得,再利用導數(shù)的幾何意義即可求解.【題目詳解】因為,所以,則曲線在點處的切線斜率為,故所求切線的傾斜角為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、0【解題分析】作出約束條件對應的可行域,當目標函數(shù)過點時,取得最小值,求解即可.【題目詳解】作出約束條件對應的可行域,如下圖陰影部分,聯(lián)立,可得交點為,目標函數(shù)可化為,當目標函數(shù)過點時,取得最小值,即.故答案為:0.【題目點撥】本題考查線性規(guī)劃,考查數(shù)形結(jié)合的數(shù)學思想的應用,考查學生的計算求解能力,屬于基礎題.14、【解題分析】設點關于原點的對稱點為點,連接,分析可知四邊形為平行四邊形,可得出,設,可得出直線的方程為,設點、,將直線的方程與雙曲線的方程聯(lián)立,列出韋達定理,求出的取值范圍,利用三角形的面積公式可求得的值,即可求得的值.【題目詳解】解:設點關于原點的對稱點為點,連接,如下圖所示:在雙曲線中,,,則,即點、,因為原點為、的中點,則四邊形為平行四邊形,所以,且,因為,故、、三點共線,所以,,故,由題意可知,,設,則直線的方程為,設點、,聯(lián)立,可得,所以,,可得,由韋達定理可得,,可得,,整理可得,即,解得或(舍),所以,,解得.故答案為:.15、【解題分析】聯(lián)立直線與雙曲線方程,可知二次項系數(shù)不為零、判別式大于零、兩根之和與兩根之積均大于零,據(jù)此構(gòu)造不等式組,解不等式組求得結(jié)果.詳解】將代入雙曲線方程整理可得:設直線與雙曲線右支交于兩點,解得:本題正確結(jié)果:【題目點撥】本題考查根據(jù)直線與雙曲線位置關系求解參數(shù)范圍的問題,屬于基礎題.16、①.②.【解題分析】首先確定的正負,分別在和兩種情況下求得,代入即可求得;由可求得,分別在和兩種情況下結(jié)合一次函數(shù)和對勾函數(shù)單調(diào)性得到最小值,綜合可得最終結(jié)果.【題目詳解】令,解得:,則當時,;當時,;當時,;當時,;;,當時,;當時,在上單調(diào)遞減,在上單調(diào)遞增,又,,,當時,;綜上所述:.故答案為:;.【題目點撥】關鍵點點睛:本題考查含絕對值的數(shù)列前項和的求解問題,解題關鍵是能夠確定數(shù)列的變號項,從而以變號項為分類基準進行分類討論得到數(shù)列的前項和;求解數(shù)列中的最值問題的關鍵是能夠利用數(shù)列與函數(shù)的關系,結(jié)合函數(shù)單調(diào)性和來進行求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】(1)建立空間直角坐標系,用點到面的距離公式即可算出答案;(2)先求出兩個面的法向量,然后用二面角公式即可.【小問1詳解】∵平面平面∴PB⊥AB,PB⊥BC,又兩兩互相垂直,所以,以點為坐標原點,分別為軸,軸,軸建立如圖所示的空間直角坐標系,D(3,6,0),A(0,6,0)設平面的一個法向量所以n?PD令,可得記點到平面的距離為,則d=【小問2詳解】由(1)可知平面的一個法向量為平面的一個法向量為設二面角的平面角為由圖可知,18、(1)(2).【解題分析】(1)由數(shù)列的前n項和與通項公式之間的關系即可完成.(2)由錯位相減法即可解決此類“差比”數(shù)列的求和.【小問1詳解】由,得當時,,上下兩式相減得,,又當時,滿足上式,所以數(shù)列的通項公式;【小問2詳解】由(1)可知,所以,則,上下兩式相減得,所以.19、(1)(2)0【解題分析】(1)由條件得和,再結(jié)合可求解;(2)設直線AB的方程為:,與橢圓聯(lián)立,得到,同理得,再根據(jù)題中的條件化簡整理可求解.【小問1詳解】因為橢圓的離心率為,所以,所以①又因為過且垂直于x軸的直線被橢圓C截得的線段長為1,所以②,由①②可知,所以,,所以橢圓C的方程為【小問2詳解】因為點P在直線上,所以設點,由題可知,直線AB的斜率與直線MN的斜率都存在所以直線AB的方程為:,即,直線MN的方程為:,即,設,,,,所以,消去y可得,,整理可得,且所以,,又因為,,所以,同理可得,又因為,所以,又因為,,,都是長度,所以,所以,整理可得,又因為,所以,所以直線AB的斜率與直線MN的斜率之和為020、(1)或;(2)8【解題分析】(1)根據(jù)題意設直線的方程為,聯(lián)立,消去得,因為只有一個公共點,則求解.(2)拋物線的焦點為,設直線的方程為,聯(lián)立,消去得,再根據(jù)過拋物線焦點的弦長公式求解.【題目詳解】(1)設直線的方程為,聯(lián)立,消去得,則,解得或,∴直線的方程為:或(2)拋物線的焦點為,則直線的方程為,設,聯(lián)立,消去得,∴,∴【題目點撥】本題主要考查直線與拋物線的位置關系,還考查了運算求解的能力,屬于中檔題.21、(1);(2)證明見解析.【解題分析】(1)根據(jù)題意,列出的方程組,通過解方程組,即可求出答案.(2)法一:設,,;當時,根據(jù)點的坐標寫出直線PA的方程,與橢圓方程聯(lián)立,可求出點的坐標;同理可求出點的坐標,然后即可求出直線EF的方程,從而證明直線EF過定點.法二:首先根據(jù)時直線EF的方程為,可判斷出直線EF過的定點M必在y軸上,設為;然后同方法一,求出點,的坐標,根據(jù),即可求出的值.【小問1詳解】由題意,知,解得,所以橢圓C的標準方程為【小問2詳解】法一:設,,,當時,直線PA的方程為,由,得解得,所以.所以同理可得所以直線EF的斜率為,所以直線EF的方程為,整理得,所以直線EF過定點當時,點E,F(xiàn)在y軸上,EF的方程為,顯然過點綜上,直線EF過定點法二:當點P在y軸上時,E,F(xiàn)分別與B,A重合,直線EF的方程為,若直線EF過定點M,則M必在y軸上,可設當點P不在y軸上時,設,,,則直線P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論