2022-2023學(xué)年日照市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末達標(biāo)檢測試題含解析_第1頁
2022-2023學(xué)年日照市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末達標(biāo)檢測試題含解析_第2頁
2022-2023學(xué)年日照市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末達標(biāo)檢測試題含解析_第3頁
2022-2023學(xué)年日照市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末達標(biāo)檢測試題含解析_第4頁
2022-2023學(xué)年日照市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末達標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.的周期為()A. B. C. D.2.如圖,在長方體中,,,,分別是,的中點則異面直線與所成角的余弦值為()A. B. C. D.3.已知向量,,則向量在向量方向上的投影為()A. B. C.-1 D.14.實數(shù)滿足,則的取值范圍為()A. B. C. D.5.若直線與直線平行,則的值為A. B. C. D.6.已知為第Ⅱ象限角,則的值為()A. B. C. D.7.在區(qū)間隨機取一個實數(shù),則的概率為()A. B. C. D.8.若,且,恒成立,則實數(shù)的取值范圍是()A. B.C. D.9.已知直線:是圓的對稱軸.過點作圓的一條切線,切點為,則()A.2 B. C.6 D.10.若是第四象限角,則是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角二、填空題:本大題共6小題,每小題5分,共30分。11.在平行四邊形中,=,邊,的長分別為2,1.若,分別是邊,上的點,且滿足,則的取值范圍是______.12.關(guān)于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:①y=f(x)的表達式可改寫為y=4cos(2x﹣);②y=f(x)是以2π為最小正周期的周期函數(shù);③y=f(x)的圖象關(guān)于點對稱;④y=f(x)的圖象關(guān)于直線x=﹣對稱.其中正確的命題的序號是.13.三菱柱ABC-A1B1C1中,底面邊長和側(cè)棱長都相等,BAA1=CAA1=60°則異面直線AB1與BC1所成角的余弦值為____________.14.如圖,網(wǎng)格紙的小正方形的邊長是1,在其上用粗線畫出了某多面體的三視圖,則這個多面體最長的一條棱的長為______.15.若點,是圓C:上不同的兩點,且,則的值為______.16.若實數(shù)滿足,則取值范圍是____________。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在△ABC中,角A,B,C的對邊分別為a,b,c,且,,求△ABC的面積的最大值.18.已知函數(shù)=的定義域為=的定義域為(其中為常數(shù)).(1)若,求及;(2)若,求實數(shù)的取值范圍.19.已知直線經(jīng)過兩條直線:和:的交點,直線:;(1)若,求的直線方程;(2)若,求的直線方程.20.已知向量,(1)若,求的坐標(biāo);(2)若與垂直,求的值.21.已知分別為內(nèi)角的對邊試從下列①②條件中任選一個作為已知條件并完成下列(1)(2)兩問的解答①;②.(1)求角(2)若,,求的面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

根據(jù)正弦型函數(shù)最小正周期的結(jié)論即可得到結(jié)果.【詳解】函數(shù)的最小正周期故選:【點睛】本題考查正弦型函數(shù)周期的求解問題,關(guān)鍵是明確正弦型函數(shù)的最小正周期.2、A【解析】

連結(jié),由,可知異面直線與所成角是,分別求出,然后利用余弦定理可求出答案.【詳解】連結(jié),因為,所以異面直線與所成角是,在中,,,,所以.故選A.【點睛】本題考查了異面直線的夾角,考查了利用余弦定理求角,考查了計算能力,屬于中檔題.3、A【解析】

根據(jù)投影的定義和向量的數(shù)量積求解即可.【詳解】解:∵,,∴向量在向量方向上的投影,故選:A.【點睛】本題主要考查向量的數(shù)量積的定義及其坐標(biāo)運算,屬于基礎(chǔ)題.4、A【解析】

畫出可行域,平移基準(zhǔn)直線到可行域邊界的位置,由此求得目標(biāo)函數(shù)的取值范圍.【詳解】畫出可行域如下圖所示,平移基準(zhǔn)直線到可行域邊界的位置,由圖可知目標(biāo)函數(shù)分別在出取的最小值和最大值,最小值為,最大值為,故的取值范圍是,故選A.【點睛】本小題主要考查線性規(guī)劃求最大值和最小值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.5、C【解析】試題分析:由兩直線平行可知系數(shù)滿足考點:兩直線平行的判定6、B【解析】

首先由,解出,求出,再利用二倍角公式以及所在位置,即可求出.【詳解】因為,所以或,又為第Ⅱ象限角,故,.因為為第Ⅱ象限角即,所以,,即為第Ⅰ,Ⅲ象限角.由于,解得,故選B.【點睛】本題主要考查二倍角公式的應(yīng)用以及象限角的集合應(yīng)用.7、C【解析】

利用幾何概型的定義區(qū)間長度之比可得答案,在區(qū)間的占比為,所以概率為?!驹斀狻恳驗榈拈L度為3,在區(qū)間的長度為9,所以概率為。故選:C【點睛】此題考查幾何概型,概率即是在部分占總體的占比,屬于簡單題目。8、A【解析】

將代數(shù)式與相乘,展開式利用基本不等式求出的最小值,將問題轉(zhuǎn)化為解不等式,解出即可.【詳解】由基本不等式得,當(dāng)且僅當(dāng),即當(dāng)時,等號成立,所以,的最小值為.由題意可得,即,解得.因此,實數(shù)的取值范圍是,故選A.【點睛】本題考查基本不等式的應(yīng)用,考查不等式恒成立問題以及一元二次不等式的解法,對于不等式恒成立問題,常轉(zhuǎn)化為最值來處理,考查計算能力,屬于中等題.9、C【解析】試題分析:直線l過圓心,所以,所以切線長,選C.考點:切線長10、C【解析】

利用象限角的表示即可求解.【詳解】由是第四象限角,則,所以,所以是第三象限角.故選:C【點睛】本題考查了象限角的表示,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

以A為原點AB為軸建立直角坐標(biāo)系,表示出MN的坐標(biāo),利用向量乘法公式得到表達式,最后計算取值范圍.【詳解】以A為原點AB為軸建立直角坐標(biāo)系平行四邊形中,=,邊,的長分別為2,1設(shè)則當(dāng)時,有最大值5當(dāng)時,有最小值2故答案為【點睛】本題考查了向量運算和向量乘法的最大最小值,通過建立直角坐標(biāo)系的方法簡化了技巧,是解決向量復(fù)雜問題的常用方法.12、①③【解析】

∵f(x)=4sin(2x+)=4cos()=4cos(﹣2x+)=4cos(2x﹣),故①正確;∵T=,故②不正確;令x=﹣代入f(x)=4sin(2x+)得到f(﹣)=4sin(+)=0,故y=f(x)的圖象關(guān)于點對稱,③正確④不正確;故答案為①③.13、【解析】

如圖設(shè)設(shè)棱長為1,則,因為底面邊長和側(cè)棱長都相等,且所以,所以,,,設(shè)異面直線的夾角為,所以.14、【解析】

試題分析:由三視圖知,幾何體是一個四棱錐,四棱錐的底面是一個正方形,邊長是2,四棱錐的一條側(cè)棱和底面垂直,且這條側(cè)棱長是2,這樣在所有的棱中,連接與底面垂直的側(cè)棱的頂點與相對的底面的頂點的側(cè)棱是最長的長度是,考點:三視圖點評:本題考查由三視圖還原幾何體,所給的是一個典型的四棱錐,注意觀察三視圖,看出四棱錐的一條側(cè)棱與底面垂直.15、【解析】

由,再結(jié)合坐標(biāo)運算即可得解.【詳解】解:因為點,是圓C:上不同的兩點,則,,又所以,即,故答案為:.【點睛】本題考查了向量模的運算,重點考查了運算能力,屬基礎(chǔ)題.16、;【解析】

利用三角換元,設(shè),;利用輔助角公式將化為,根據(jù)三角函數(shù)值域求得結(jié)果.【詳解】可設(shè),,本題正確結(jié)果:【點睛】本題考查利用三角換元法求解取值范圍的問題,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為三角函數(shù)值域的求解問題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】

(1)利用二倍角公式、輔助角公式進行化簡,,然后根據(jù)單調(diào)區(qū)間對應(yīng)的的公式求解單調(diào)區(qū)間;(2)根據(jù)計算出的值,再利用余弦定理計算出的最大值則可求面積的最大值,注意不等式取等號條件.【詳解】解:(1)∴函數(shù)的單調(diào)遞增區(qū)間為,(2)由(1)知得(舍)或∴有余弦定理得即∴當(dāng)且僅當(dāng)時取等號∴【點睛】(1)輔助角公式:;(2)三角形中,已知一邊及其對應(yīng)角時,若要求解面積最大值,在未給定三角形形狀時,可選用余弦定理求解更方便,若是給定三角形形狀,這時選用正弦定理并需要對角的范圍作出判斷.18、(1);=.(2)【解析】試題分析:(1)先根據(jù)偶次根式非負(fù)得不等式,解不等式得A,B,再結(jié)合數(shù)軸求交,并,補(2)先根據(jù)得,再根據(jù)數(shù)軸得實數(shù)的取值范圍.試題解析:(1)若,則由已知有因此;,所以=.(2)∴,又==∴19、(1);(2)【解析】

(1)先求出與的交點,再利用兩直線平行斜率相等求直線l(2)利用兩直線垂直斜率乘積等于-1求直線l【詳解】(1)由,得,∴與的交點為.設(shè)與直線平行的直線為,則,∴.∴所求直線方程為.(2)設(shè)與直線垂直的直線為,則,解得.∴所求直線方程為.【點睛】兩直線平行斜率相等,兩直線垂直斜率乘積等于-1.20、(1);(2)【解析】

(1)直接由向量的數(shù)乘及減法運算求解;(2)由向量的數(shù)乘及減法運算求得的坐標(biāo),再由向量垂直的坐標(biāo)運算求解.【詳解】(1).(2)與垂直,,即,∴.【點睛】本題考查平面向量的坐標(biāo)運算、考查向量垂直的坐標(biāo)表示,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎(chǔ)題.21、(1)選擇①,;選擇②,(2)【解析】

(1)選擇①,利用正弦定理余弦定理化簡

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論