版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知x,y為正實(shí)數(shù),則()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx?2lgyC.2lgx?lgy=2lgx+2lgy D.2lg(xy)=2lgx?2lgy2.若數(shù)列,若,則在下列數(shù)列中,可取遍數(shù)列前項(xiàng)值的數(shù)列為()A. B. C. D.3.若直線始終平分圓的周長(zhǎng),則的最小值為()A. B.5 C.2 D.104.在中,內(nèi)角,,的對(duì)邊分別為,,.若,則的形狀是A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不確定5.已知等差數(shù)列中,則()A.10 B.16 C.20 D.246.已知為遞增等比數(shù)列,則()A. B.5 C.6 D.7.已知,,則()A. B. C. D.8.若存在正實(shí)數(shù),使得,則()A.實(shí)數(shù)的最大值為 B.實(shí)數(shù)的最小值為C.實(shí)數(shù)的最大值為 D.實(shí)數(shù)的最小值為9.在等差數(shù)列中,如果,則數(shù)列前9項(xiàng)的和為()A.297 B.144 C.99 D.6610.阿波羅尼斯是古希臘著名的數(shù)學(xué)家,與歐幾里得、阿基米德被稱為亞歷山大時(shí)期數(shù)學(xué)三巨匠,他對(duì)幾何問(wèn)題有深刻而系統(tǒng)的研究,阿波羅尼斯圓是他的研究成果之一,指出的是:已知?jiǎng)狱c(diǎn)M與兩定點(diǎn)A,B的距離之比為,那么點(diǎn)M的軌跡是一個(gè)圓,稱之為阿波羅尼斯圓.請(qǐng)解答下面問(wèn)題:已知,,若直線上存在點(diǎn)M滿足,則實(shí)數(shù)c的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列滿足:(且為常數(shù)),,當(dāng)時(shí),則數(shù)列的前項(xiàng)的和為_(kāi)_______.12._________.13.某中學(xué)從甲乙丙3人中選1人參加全市中學(xué)男子1500米比賽,現(xiàn)將他們最近集訓(xùn)中的10次成績(jī)(單位:秒)的平均數(shù)與方差制成如下的表格:甲乙丙平均數(shù)250240240方差151520根據(jù)表中數(shù)據(jù),該中學(xué)應(yīng)選__________參加比賽.14.點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為_(kāi)____.15.設(shè)α,β是兩個(gè)不同的平面,l,m是兩條不同的直線,且l?α,m?β,下列四個(gè)命題正確的是________.①若l⊥β,則α⊥β;②若α⊥β,則l⊥m;③若l∥β,則α∥β;④若α∥β,則l∥m.16.關(guān)于的不等式的解集是,則______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.設(shè)的內(nèi)角為所對(duì)的邊分別為,且.(1)求角的大小;(2)若,求的周長(zhǎng)的取值范圍.18.為了對(duì)某課題進(jìn)行研究,用分層抽樣方法從三所高校,,的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見(jiàn)下表(單位:人).高校相關(guān)人員抽取人數(shù)A18B362C54(1)求,;(2)若從高校,抽取的人中選2人做專題發(fā)言,求這2人都來(lái)自高校的概率.19.如圖,在三棱錐P-ABC中,PA⊥底面ABC,D是PC的中點(diǎn).已知∠BAC=,AB=2,AC=2,PA=2.求:(1)三棱錐P-ABC的體積;(2)異面直線BC與AD所成的角的大?。ńY(jié)果用反三角函數(shù)值表示).20.如圖為函數(shù)f(x)=Asin(Ⅰ)求函數(shù)f(x)=Asin(Ⅱ)若x∈0,π2時(shí),函數(shù)y=21.在中,的對(duì)邊分別為,已知.(1)求的值;(2)若的面積為,,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】因?yàn)閍s+t=as?at,lg(xy)=lgx+lgy(x,y為正實(shí)數(shù)),所以2lg(xy)=2lgx+lgy=2lgx?2lgy,滿足上述兩個(gè)公式,故選D.2、D【解析】
推導(dǎo)出是以6為周期的周期數(shù)列,從而是可取遍數(shù)列前6項(xiàng)值的數(shù)列.【詳解】數(shù)列,,,,,,,,,是以6為周期的周期數(shù)列,是可取遍數(shù)列前6項(xiàng)值的數(shù)列.故選:D.【點(diǎn)睛】本題考查數(shù)列的周期性與三角函數(shù)知識(shí)的交會(huì),考查基本運(yùn)算求解能力,求解時(shí)注意函數(shù)與方程思想的應(yīng)用.3、B【解析】試題分析:把圓的方程化為標(biāo)準(zhǔn)方程得,所以圓心坐標(biāo)為半徑,因?yàn)橹本€始終平分圓的周長(zhǎng),所以直線過(guò)圓的圓心,把代入直線得;即,在直線上,是點(diǎn)與點(diǎn)的距離的平方,因?yàn)榈街本€的距離,所以的最小值為,故選B.考點(diǎn):1、圓的方程及幾何性質(zhì);2、點(diǎn)到直線的距離公式及最值問(wèn)題的應(yīng)用.【方法點(diǎn)晴】本題主要考查圓的方程及幾何性質(zhì)、點(diǎn)到直線的距離公式及最值問(wèn)題的應(yīng)用,屬于難題.解決解析幾何的最值問(wèn)題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來(lái)解決,非常巧妙;二是將解析幾何中最值問(wèn)題轉(zhuǎn)化為函數(shù)問(wèn)題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題就是利用幾何意義,將的最小值轉(zhuǎn)化為點(diǎn)到直線的距離解答的.4、C【解析】
由正弦定理可推得,再由余弦定理計(jì)算最大邊的余弦值即可判斷三角形形狀.【詳解】因?yàn)?,所以,設(shè),,,則角為的最大角,由余弦定理可得,即,故是鈍角三角形.【點(diǎn)睛】本題考查用正弦定理和余弦定理解三角形,屬于基礎(chǔ)題.5、C【解析】
根據(jù)等差數(shù)列性質(zhì)得到,再計(jì)算得到答案.【詳解】已知等差數(shù)列中,故答案選C【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),是數(shù)列的??碱}型.6、D【解析】
設(shè)數(shù)列的公比為,根據(jù)等比數(shù)列的性質(zhì),得,又由,求得,進(jìn)而可求解的值,得到答案.【詳解】根據(jù)題意,等比數(shù)列中,設(shè)其公比為,因?yàn)?,則有,又由,且,解得,所以,所以,故選D.【點(diǎn)睛】本題主要考查了等比數(shù)列的通項(xiàng)公式和等比數(shù)列的性質(zhì)的應(yīng)用,其中解答中熟練應(yīng)用等比數(shù)列的性質(zhì),準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.7、C【解析】
利用二倍角公式變形為,然后利用弦化切的思想求出的值,可得出角的值.【詳解】,化簡(jiǎn)得,,則,,因此,,故選C.【點(diǎn)睛】本題考查二倍角公式的應(yīng)用,考查弦切互化思想的應(yīng)用,考查給值求角的問(wèn)題,著重考查學(xué)生對(duì)三角恒等變換思想的應(yīng)用能力,屬于中等題.8、C【解析】
將題目所給方程轉(zhuǎn)化為關(guān)于的一元二次方程,根據(jù)此方程在上有解列不等式組,解不等式組求得的取值范圍,進(jìn)而求出正確選項(xiàng).【詳解】由得,當(dāng)時(shí),方程為不和題意,故這是關(guān)于的一元二次方程,依題意可知,該方程在上有解,注意到,所以由解得,故實(shí)數(shù)的最大值為,所以選C.【點(diǎn)睛】本小題主要考查一元二次方程根的分布問(wèn)題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.9、C【解析】試題分析:,,∴a4=13,a6=9,S9==99考點(diǎn):等差數(shù)列性質(zhì)及前n項(xiàng)和點(diǎn)評(píng):本題考查了等差數(shù)列性質(zhì)及前n項(xiàng)和,掌握相關(guān)公式及性質(zhì)是解題的關(guān)鍵.10、B【解析】
根據(jù)題意設(shè)點(diǎn)M的坐標(biāo)為,利用兩點(diǎn)間的距離公式可得到關(guān)于的一元二次方程,只需即可求解.【詳解】點(diǎn)M在直線上,不妨設(shè)點(diǎn)M的坐標(biāo)為,由直線上存在點(diǎn)M滿足,則,整理可得,,所以實(shí)數(shù)c的取值范圍為.故選:B【點(diǎn)睛】本題考查了兩點(diǎn)間的距離公式、一元二次不等式的解法,考查了學(xué)生分析問(wèn)題解決問(wèn)題的能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
直接利用分組法和分類討論思想求出數(shù)列的和.【詳解】數(shù)列滿足:(且為常數(shù)),,當(dāng)時(shí),則,所以(常數(shù)),故,所以數(shù)列的前項(xiàng)為首項(xiàng)為,公差為的等差數(shù)列.從項(xiàng)開(kāi)始,由于,所以奇數(shù)項(xiàng)為、偶數(shù)項(xiàng)為,所以,故答案為:【點(diǎn)睛】本題考查了由遞推關(guān)系式求數(shù)列的性質(zhì)、等差數(shù)列的前項(xiàng)和公式,需熟記公式,同時(shí)也考查了分類討論的思想,屬于中檔題.12、【解析】
根據(jù)誘導(dǎo)公式和特殊角的三角函數(shù)值可計(jì)算出結(jié)果.【詳解】由題意可得,原式.故答案為.【點(diǎn)睛】本題考查誘導(dǎo)公式和特殊三角函數(shù)值的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.13、乙;【解析】
一個(gè)看均值,要均值小,成績(jī)好;一個(gè)看方差,要方差小,成績(jī)穩(wěn)定.【詳解】乙的均值比甲小,與丙相同,乙的方差與甲相同,但比丙小,即乙成績(jī)好,又穩(wěn)定,應(yīng)選乙、故答案為乙.【點(diǎn)睛】本題考查用樣本的數(shù)據(jù)特征來(lái)解決實(shí)際問(wèn)題.一般可看均值(找均值好的)和方差(方差小的穩(wěn)定),這樣比較易得結(jié)論.14、【解析】
設(shè)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為,再根據(jù)中點(diǎn)在直線上,且與直線垂直求解即可.【詳解】設(shè)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為,則中點(diǎn)為,則在直線上,故①.又與直線垂直有②,聯(lián)立①②可得.故.故答案為:【點(diǎn)睛】本題主要考查了點(diǎn)關(guān)于直線對(duì)稱的點(diǎn)坐標(biāo),屬于基礎(chǔ)題.15、①【解析】
由線面的平行垂直的判定和性質(zhì)一一檢驗(yàn)即可得解.【詳解】由平面與平面垂直的判定可知,①正確;②中,當(dāng)α⊥β時(shí),l,m可以垂直,也可以平行,也可以異面;③中,l∥β時(shí),α,β可以相交;④中,α∥β時(shí),l,m也可以異面.故答案為①.【點(diǎn)睛】本題主要考查了線面、面面的垂直和平行位置關(guān)系的判定和性質(zhì),屬于基礎(chǔ)題.16、【解析】
利用二次不等式解集與二次方程根的關(guān)系,由二次不等式的解集得到二次方程的根,再利用根與系數(shù)的關(guān)系,得到和的值,得到答案.【詳解】因?yàn)殛P(guān)于的不等式的解集是,所以關(guān)于的方程的解是,由根與系數(shù)的關(guān)系得,解得,所以.【點(diǎn)睛】本題考查二次不等式解集和二次方程根之間的關(guān)系,屬于簡(jiǎn)單題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】試題分析:(1)已知,由余弦定理角化邊得,再由余弦定理可得角的值;(2)根據(jù)與,由正弦定理求得,,結(jié)合代入到的周長(zhǎng)表達(dá)式,利用三角恒等變換化簡(jiǎn)得到的周長(zhǎng)關(guān)于角的三角函數(shù),再根據(jù)正弦函數(shù)的圖象與性質(zhì),即可求解周長(zhǎng)的取值范圍.試題解析:(1),由余弦定理,得,,∵.(2).由正弦定理,得,同理可得,的周長(zhǎng),,的周長(zhǎng),故的周長(zhǎng)的取值范圍為.點(diǎn)睛:在解三角形的范圍問(wèn)題時(shí)往往要運(yùn)用正弦定理或余弦定理轉(zhuǎn)化為角度的范圍問(wèn)題,這樣可以利用輔助角公式進(jìn)行化簡(jiǎn),再根據(jù)角的范圍求得最后的結(jié)果.18、(1),(2)【解析】
(1)根據(jù)分層抽樣的概念,可得,求解即可;(2)分別記從高校抽取的2人為,,從高校抽取的3人為,,,先列出從5人中選2人作專題發(fā)言的基本事件,再列出2人都來(lái)自高校的基本事件,進(jìn)而求出概率【詳解】(1)由題意可得,所以,(2)記從高校抽取的2人為,,從高校抽取的3人為,,,則從高校,抽取的5人中選2人作專題發(fā)言的基本事件有,,,,,,,,,共10種設(shè)選中的2人都來(lái)自高校的事件為,則包含的基本事件有,,共3種因此,故選中的2人都來(lái)自高校的概率為【點(diǎn)睛】本題考查分層抽樣,考查古典概型,屬于基礎(chǔ)題19、(1);(2).【解析】
(1),三棱錐P-ABC的體積為.(2)取PB的中點(diǎn)E,連接DE、AE,則ED∥BC,所以∠ADE(或其補(bǔ)角)是異面直線BC與AD所成的角.在三角形ADE中,DE=2,AE=,AD=2,,所以∠ADE=.因此,異面直線BC與AD所成的角的大小是.20、(Ⅰ)f(x)=23【解析】
(Ⅰ)根據(jù)三角函數(shù)的圖像,得到周期,求出ω=2,再由函數(shù)零點(diǎn),得到2×π6+φ=2kπ,k∈Z(Ⅱ)先由題意得到f(x)∈-1,233,再將函數(shù)【詳解】(Ⅰ)由圖象知,T∴T=π,ω=2∵2×π6+φ=2kπ,k∈Z,及而f(0)=Asin(-π3故f(x)=2(Ⅱ)∵x∈∴2x-π3∈又函
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年項(xiàng)目參與保密協(xié)議
- 2024無(wú)縫鋼管行業(yè)專利申請(qǐng)與保護(hù)協(xié)議2篇
- 2024招投標(biāo)與合同管理:知識(shí)產(chǎn)權(quán)合同保護(hù)第一課3篇
- 2024年某高速路段建設(shè)引薦服務(wù)協(xié)議
- 2024年股權(quán)變更正規(guī)協(xié)議模板版B版
- 2024年設(shè)備租賃押金借款合同
- 2025餐飲業(yè)食品安全管理體系認(rèn)證合同范本3篇
- 專業(yè)市場(chǎng)2024年度經(jīng)營(yíng)管理承包合同書(shū)版B版
- 2024技術(shù)開(kāi)發(fā)合作合同技術(shù)指標(biāo)
- 2024食品公司信息安全保密合同
- 《生物安全培訓(xùn)》課件-2024鮮版
- 述職報(bào)告評(píng)分表
- 變壓器交接試驗(yàn)報(bào)告(1250)
- LOI外貿(mào)采購(gòu)意向(標(biāo)準(zhǔn)樣本)
- 水電交接確認(rèn)單(共2頁(yè))
- CTG-MBOSS CRM20 分總冊(cè)_普訓(xùn)版_圖文
- 2022年薄壁空心墩施工安全專項(xiàng)方案
- 消防安全知識(shí)壁報(bào)-04火災(zāi)逃生十訣別4
- ProCAST后處理及結(jié)果分析2009-003
- 輕鋼龍骨石膏板隔墻施工合同協(xié)議書(shū)范本模板.doc
- 管片生產(chǎn)安全技術(shù)交底
評(píng)論
0/150
提交評(píng)論