2022-2023學(xué)年天津市寶坻區(qū)數(shù)學(xué)高一第二學(xué)期期末質(zhì)量檢測試題含解析_第1頁
2022-2023學(xué)年天津市寶坻區(qū)數(shù)學(xué)高一第二學(xué)期期末質(zhì)量檢測試題含解析_第2頁
2022-2023學(xué)年天津市寶坻區(qū)數(shù)學(xué)高一第二學(xué)期期末質(zhì)量檢測試題含解析_第3頁
2022-2023學(xué)年天津市寶坻區(qū)數(shù)學(xué)高一第二學(xué)期期末質(zhì)量檢測試題含解析_第4頁
2022-2023學(xué)年天津市寶坻區(qū)數(shù)學(xué)高一第二學(xué)期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若,則()A. B. C.2 D.2.一個(gè)圓柱的側(cè)面展開圖是一個(gè)正方形,這個(gè)圓柱全面積與側(cè)面積的比為()A. B. C. D.3.某學(xué)校的A,B,C三個(gè)社團(tuán)分別有學(xué)生人,人,人,若采用分層抽樣的方法從三個(gè)社團(tuán)中共抽取人參加某項(xiàng)活動(dòng),則從A社團(tuán)中應(yīng)抽取的學(xué)生人數(shù)為()A.2 B.4 C.5 D.64.在中,角A,B,C所對的邊分別為a,b,c,,,,則()A. B. C. D.5.已知非零向量、,“函數(shù)為偶函數(shù)”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件6.如果將直角三角形的三邊都增加1個(gè)單位長度,那么新三角形()A.一定是銳角三角形 B.一定是鈍角三角形C.一定是直角三角形 D.形狀無法確定7.公差不為零的等差數(shù)列的前項(xiàng)和為.若是的等比中項(xiàng),,則等于()A.18 B.24 C.60 D.908.已知向量、的夾角為,,,則()A. B. C. D.9.已知,則的值為A. B. C. D.10.若a=(3,2),bA.(3,-4) B.(-3,4) C.(3,4) D.(-3,-4)二、填空題:本大題共6小題,每小題5分,共30分。11.已知常數(shù)θ∈(0,π2),若函數(shù)f(x)在Rf(x)=2sinπx-1≤x≤1log是________.12.已知關(guān)于兩個(gè)隨機(jī)變量的一組數(shù)據(jù)如下表所示,且成線性相關(guān),其回歸直線方程為,則當(dāng)變量時(shí),變量的預(yù)測值應(yīng)該是_________.23456467101313.我國南宋著名數(shù)學(xué)家秦九韶發(fā)現(xiàn)了從三角形三邊求三角形面積的“三斜公式”,設(shè)的三個(gè)內(nèi)角A、B、C所對的邊分別為a、b、c,面積為S,則“三斜公式”為.若,,則用“三斜公式”求得的面積為______.14.直線和將單位圓分成長度相等的四段弧,則________.15.當(dāng),時(shí),執(zhí)行完如圖所示的一段程序后,______.16.已知數(shù)列滿足則的最小值為__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.某中學(xué)從高三男生中隨機(jī)抽取n名學(xué)生的身高,將數(shù)據(jù)整理,得到的頻率分布表如表所示:組號分組頻數(shù)頻率第1組50.05第2組a0.35第3組30b第4組200.20第5組100.10合計(jì)n1.00(1)求出頻率分布表中的值,并完成下列頻率分布直方圖;(2)為了能對學(xué)生的體能做進(jìn)一步了解,該校決定在第1,4,5組中用分層抽樣取7名學(xué)生進(jìn)行不同項(xiàng)目的體能測試,若在這7名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行引體向上測試,求第4組中至少有一名學(xué)生被抽中的概率.18.已知數(shù)列滿足,令(1)求證數(shù)列為等比數(shù)列,并求通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.19.已知函數(shù)=的定義域?yàn)?的定義域?yàn)?其中為常數(shù)).(1)若,求及;(2)若,求實(shí)數(shù)的取值范圍.20.已知的外接圓的半徑為,內(nèi)角,,的對邊分別為,,,又向量,,且.(1)求角;(2)求三角形的面積的最大值并求此時(shí)的周長.21.如圖,在平面直角坐標(biāo)系中,銳角和鈍角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,終邊分別與單位圓交于,兩點(diǎn),且.(1)求的值;(2)若點(diǎn)的橫坐標(biāo)為,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

將轉(zhuǎn)化為,結(jié)合二倍角的正切公式即可求出.【詳解】故選D【點(diǎn)睛】本題主要考查了二倍角的正切公式,關(guān)鍵是將轉(zhuǎn)化為,利用二倍角的正切公式求出,屬于基礎(chǔ)題.2、A【解析】解:設(shè)圓柱底面積半徑為r,則高為2πr,全面積:側(cè)面積=[(2πr)2+2πr2]:(2πr)2這個(gè)圓柱全面積與側(cè)面積的比為,故選A3、B【解析】

分層抽樣每部分占比一樣,通過A,B,C三個(gè)社團(tuán)為,易得A中的人數(shù)?!驹斀狻緼,B,C三個(gè)社團(tuán)人數(shù)比為,所以12中A有人,B有人,C有人。故選:B【點(diǎn)睛】此題考查分層抽樣原理,根據(jù)抽樣前后每部分占比一樣求解即可,屬于簡單題目。4、C【解析】

根據(jù)正弦定理,得到的值,然后判斷出,從而得到.【詳解】在中,由正弦定理得,所以,因?yàn)?,,所以,所以為銳角,所以.故選:C.【點(diǎn)睛】本題考查余弦定理解三角形,屬于簡單題.5、C【解析】

根據(jù),求出向量的關(guān)系,再利用必要條件和充分條件的定義,即可判定,得到答案.【詳解】由題意,函數(shù),又為偶函數(shù),所以,則,即,可得,所以,若,則,所以,則,所以函數(shù)是偶函數(shù),所以“函數(shù)為偶函數(shù)”是“”的充要條件.故選C.【點(diǎn)睛】本題主要考查了向量的數(shù)量積的運(yùn)算,函數(shù)奇偶性的定義及其判定,以及充分條件和必要條件的判定,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.6、A【解析】

直角三角形滿足勾股定理,,再比較,,大小關(guān)系即可.【詳解】設(shè)直角三角形滿足,則,又為新三角形最長邊,所以所以最大角為銳角,所以三角形為銳角三角形.故選A【點(diǎn)睛】判斷三角形形狀一般可通過余弦定理判斷,若有一角的余弦值小于零則為鈍角三角形,等于零則為直角三角形,最大角的余弦值大于零則為銳角三角形,屬于較易題目.7、C【解析】

由等比中項(xiàng)的定義可得,根據(jù)等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式,列方程解出和,進(jìn)而求出.【詳解】因?yàn)槭桥c的等比中項(xiàng),所以,即,整理得,又因?yàn)?,所以,故,故選C.【點(diǎn)睛】該題考查的是有關(guān)等差數(shù)列求和問題,涉及到的知識點(diǎn)有等差數(shù)列的通項(xiàng),等比中項(xiàng)的定義,等差數(shù)列的求和公式,正確應(yīng)用相關(guān)公式是解題的關(guān)鍵.8、B【解析】

利用平面向量數(shù)量積和定義計(jì)算出,可得出結(jié)果.【詳解】向量、的夾角為,,,則.故選:B.【點(diǎn)睛】本題考查利用平面向量的數(shù)量積來計(jì)算平面向量的模,在計(jì)算時(shí),一般將模進(jìn)行平方,利用平面向量數(shù)量積的定義和運(yùn)算律進(jìn)行計(jì)算,考查計(jì)算能力,屬于中等題.9、B【解析】

利用誘導(dǎo)公式求得tanα,再利用同角三角函數(shù)的基本關(guān)系求得要求式子的值.【詳解】∵已知tanα,∴tanα,則,故選B.【點(diǎn)睛】本題主要考查應(yīng)用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.10、D【解析】

直接利用向量的坐標(biāo)運(yùn)算法則化簡求解即可.【詳解】解:向量a=(3,2),b則向量2b-故選D.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算,考查計(jì)算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、15【解析】

根據(jù)f(-1【詳解】∵函數(shù)f(x)在R上恒有f(-1∴f-∴函數(shù)周期為4.∵常數(shù)θ∈(0,π∴cos∴函數(shù)y=f(x)-cosθ-1在區(qū)間[-5,14]上零點(diǎn),即函數(shù)y=f(x)?(x∈[-5,14])與直線由f(x)=2sinπx由圖可知,在一個(gè)周期內(nèi),函數(shù)y=f(x)-cos故函數(shù)y=f(x)-cosθ-1在區(qū)間故填15.【點(diǎn)睛】本題主要考查了函數(shù)零點(diǎn)的個(gè)數(shù)判斷,涉及數(shù)形結(jié)合思想在解題中的運(yùn)用,屬于難題.12、21.2【解析】

計(jì)算出,,可知回歸方程經(jīng)過樣本中心點(diǎn),從而求得,代入可得答案.【詳解】由表中數(shù)據(jù)知,,,線性回歸直線必過點(diǎn),所以將,代入回歸直線方程中,得,所以當(dāng)時(shí),.【點(diǎn)睛】本題主要考查回歸方程的相關(guān)計(jì)算,難度很小.13、【解析】

先由,根據(jù)余弦定理,求出,再由,結(jié)合余弦定理,求出,再由題意即可得出結(jié)果.【詳解】因?yàn)?,所以,因此;又,由余弦定理可得,所以,因?故答案為【點(diǎn)睛】本題主要考查解三角形,熟記正弦定理與余弦定理即可,屬于常考題型.14、0【解析】

將單位圓分成長度相等的四段弧,每段弧對應(yīng)的圓周角為,計(jì)算得到答案.【詳解】如圖所示:將單位圓分成長度相等的四段弧,每段弧對應(yīng)的圓周角為或故答案為0【點(diǎn)睛】本題考查了直線和圓相交問題,判斷每段弧對應(yīng)的圓周角為是解題的關(guān)鍵.15、1【解析】

模擬程序運(yùn)行,可得出結(jié)論.【詳解】時(shí),滿足,所以.故答案為:1.【點(diǎn)睛】本題考查程序框圖,考查條件結(jié)構(gòu),解題時(shí)模擬程序運(yùn)行即可.16、【解析】

先利用累加法求出an=1+n2﹣n,所以,設(shè)f(n),由此能導(dǎo)出n=5或6時(shí)f(n)有最小值.借此能得到的最小值.【詳解】解:∵an+1﹣an=2n,∴當(dāng)n≥2時(shí),an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+1=n2﹣n+1且對n=1也適合,所以an=n2﹣n+1.從而設(shè)f(n),令f′(n),則f(n)在上是單調(diào)遞增,在上是遞減的,因?yàn)閚∈N+,所以當(dāng)n=5或6時(shí)f(n)有最小值.又因?yàn)?,,所以的最小值為故答案為【點(diǎn)睛】本題考查了利用遞推公式求數(shù)列的通項(xiàng)公式,考查了累加法.還考查函數(shù)的思想,構(gòu)造函數(shù)利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)直方圖見解析;(2).【解析】

(1)由題意知,0.050,從而n=100,由此求出第2組的頻數(shù)和第3組的頻率,并完成頻率分布直方圖.(2)利用分層抽樣,35名學(xué)生中抽取7名學(xué)生,設(shè)第1組的1位學(xué)生為,第4組的4位同學(xué)為,第5組的2位同學(xué)為,利用列舉法能求出第4組中至少有一名學(xué)生被抽中的概率.【詳解】(1)由頻率分布表可得,所以,;(2)因?yàn)榈?,4,5組共有35名學(xué)生,利用分層抽樣,在35名學(xué)生中抽取7名學(xué)生,每組分別為:第1組;第4組;第5組.設(shè)第1組的1位學(xué)生為,第4組的4位同學(xué)為,第5組的2位同學(xué)為.則從7位學(xué)生中抽兩位學(xué)生的基本事件分別為:一共21種.記“第4組中至少有一名學(xué)生被抽中”為事件,即包含的基本事件分別為:一共3種,于是所以,.【點(diǎn)睛】本題考查概率的求法,考查頻率分布直方圖、列舉法等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.18、(1);(2)【解析】

(1)由變形可得,即,于是可得數(shù)列為等比數(shù)列,進(jìn)而得到通項(xiàng)公式;(2)由(1)得,然后分為奇數(shù)、偶數(shù)兩種情況,將轉(zhuǎn)化為數(shù)列的求和問題解決.【詳解】(1)∵,∴,∵,∴.又,∴數(shù)列是首項(xiàng)為8,公比為3的等比數(shù)列,∴.(2)當(dāng)為正偶數(shù)時(shí),.當(dāng)為正奇數(shù)時(shí),.∴.【點(diǎn)睛】(1)證明數(shù)列為等比數(shù)列時(shí),在運(yùn)用定義證明的同時(shí)還要說明數(shù)列中不存在等于零的項(xiàng),這一點(diǎn)容易忽視.(2)數(shù)列求和時(shí)要根據(jù)數(shù)列通項(xiàng)公式的特點(diǎn),選擇合適的方法進(jìn)行求解,求解時(shí)要注意確定數(shù)列的項(xiàng)數(shù).19、(1);=.(2)【解析】試題分析:(1)先根據(jù)偶次根式非負(fù)得不等式,解不等式得A,B,再結(jié)合數(shù)軸求交,并,補(bǔ)(2)先根據(jù)得,再根據(jù)數(shù)軸得實(shí)數(shù)的取值范圍.試題解析:(1)若,則由已知有因此;,所以=.(2)∴,又==∴20、(1).(2),周長為.【解析】

(1)由,利用坐標(biāo)表示化簡,結(jié)合余弦定理求角C(2)利用(1)中,應(yīng)用正弦定理和基本不等式,即可求出面積的最大值,此時(shí)三角形為正三角即可求周長.【詳解】(1)∵,∴,且,由正弦定理得:,化簡得:.由余弦定理:,∴,∵,∴.(2)∵,∴(當(dāng)且僅當(dāng)時(shí)取“”),所以,,此時(shí),為正三角形,此時(shí)三角形的周長為.【點(diǎn)睛】本題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論