版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
上海農(nóng)十二師高級中學(xué)高三數(shù)學(xué)理知識點試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.定義在R上的函數(shù)y=f(x)的圖象是連續(xù)不斷的,且滿足f(3﹣x)=f(x),當(dāng)x≠時總有(x﹣)f′(x)>0(f′(x)是f(x)的導(dǎo)函數(shù)),若x1<x2,且x1+x2>3,則(
) A.f(x1)>f(x2) B.f(x1)<f(x2) C.f(x1)=f(x2) D.f(x2)與f(x2)的大小無法確定參考答案:B考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.專題:數(shù)形結(jié)合;導(dǎo)數(shù)的綜合應(yīng)用.分析:根據(jù)已知條件便可得到f(x)關(guān)于x=對稱,在區(qū)間上單調(diào)遞減,而在上單調(diào)遞增,從而可以畫出f(x)的大致圖象,根據(jù)圖象上的點關(guān)于對稱軸的對稱點的橫坐標(biāo)之和為3并結(jié)合圖象即可判斷出f(x1)和f(x2)的大小關(guān)系.解答: 解:根據(jù)f(3﹣x)=f(x)知f(x)關(guān)于x=對稱;當(dāng)x時,總有;∴時f(x)單調(diào)遞減,時f(x)單調(diào)遞增;∴f(x)的大致形狀如下圖所示:x1+x2>3,∴(1)若,作點(x1,f(x1))關(guān)于x=的對稱點為(x3,f(x3)),則:x1+x3=3;∴x2>x3;∴f(x2)>f(x3)=f(x1);即f(x2)>f(x1);(2)若,x1<x2;∴f(x1)<f(x2);∴綜上得f(x1)<f(x2).故選B.點評:考查由f(a﹣x)=f(x)能得到f(x)關(guān)于對稱,函數(shù)導(dǎo)數(shù)符號和函數(shù)單調(diào)性的關(guān)系,以及數(shù)形結(jié)合解題的方法.2.一個算法的程序框圖如圖所示,若該程序輸出的結(jié)果為,則判斷框中應(yīng)填入的條件是(
)A.
B.C.
D.參考答案:B3.若,,,則(A)
(B) (C)
(D)參考答案:C4.設(shè)等差數(shù)列的前項和為,,則等于(
)A.10
B.12
C.15
D.30參考答案:C略5.某學(xué)校有2500名學(xué)生,其中高一1000人,高二900人,高三600人,為了了解學(xué)生的身體健康狀況,采用分層抽樣的方法,若從本校學(xué)生中抽取100人,從高一和高二抽取樣本數(shù)分別為,且直線與以為圓心的圓交于兩點,且,則圓的方程為(
)A.
B.C.
D.參考答案:C6.設(shè)集合A={x∈R|<1},B={x∈R|2x<1},則(
)A.A?B B.A=B C.A?B D.A∩B=?參考答案:A【考點】集合的包含關(guān)系判斷及應(yīng)用.【專題】計算題;集合.【分析】分別化簡集合A,B,即可得出結(jié)論.【解答】解:∵,∴A={x|x>1或x<0},∵2x<1,∴B={x|x<0},∴B?A.故選:A.【點評】本題考查利用集合的特征性質(zhì)來判斷兩個集合之間的關(guān)系,考查學(xué)生的計算能力,比較基礎(chǔ).7.執(zhí)行如圖的程序框圖,那么輸出S的值是()A.2 B. C.1 D.﹣1參考答案:B【考點】程序框圖.【專題】計算題;圖表型;歸納法;算法和程序框圖.【分析】框圖首先給變量S,k賦值S=2,k=1,然后判斷k<2016是否成立,成立則執(zhí)行S=,否則跳出循環(huán),輸出S,然后依次判斷執(zhí)行,由執(zhí)行結(jié)果看出,S的值呈周期出現(xiàn),根據(jù)最后當(dāng)k=2015時算法結(jié)束可求得S的值.【解答】解:框圖首先給變量S,k賦值S=2,k=1.判斷1<2016,執(zhí)行S==﹣1,k=1+1=2;判斷2<2016,執(zhí)行S==,k=2+1=3;判斷3<2016,執(zhí)行S==2,k=3+1=4;判斷4<2016,執(zhí)行S==﹣1,k=4+1=5;…程序依次執(zhí)行,由上看出,程序每循環(huán)3次S的值重復(fù)出現(xiàn)1次.而由框圖看出,當(dāng)k=2015時還滿足判斷框中的條件,執(zhí)行循環(huán),當(dāng)k=2016時,跳出循環(huán).又2015=671×3+2.所以當(dāng)計算出k=2015時,算出的S的值為.此時2016不滿足2016<2016,跳出循環(huán),輸出S的值為.故選:B.【點評】本題考查了程序框圖,是當(dāng)型結(jié)構(gòu),即先判斷后執(zhí)行,滿足條件執(zhí)行循環(huán),不滿足條件,跳出循環(huán),算法結(jié)束,解答的關(guān)鍵是算準(zhǔn)周期,是基礎(chǔ)題.8.若復(fù)數(shù)滿足,則復(fù)數(shù)的虛部為(
)A. B. C. D.參考答案:B9.曲線+的離心率為(
)A.
B.
C.
D.2參考答案:B略10.在第29屆北京奧運會上,中國健兒取得了51金、21銀、28銅的好成績,穩(wěn)居金牌榜榜首,由此許多人認(rèn)為中國進(jìn)入了世界體育強國之列,也有許多人持反對意見,有網(wǎng)友為此進(jìn)行了調(diào)查,在參加調(diào)查的2548名男性中有1560名持反對意見,2452名女性中有1200名持反對意見,在運用這些數(shù)據(jù)說明性別對判斷“中國進(jìn)入了世界體育強國之列”是否有關(guān)系時,用什么方法最有說服力()A.平均數(shù)與方差
B.回歸直線方程
C.獨立性檢驗
D.概率參考答案:C二、填空題:本大題共7小題,每小題4分,共28分11.函數(shù)的定義域是(
)A.
B.
C.
D.
參考答案:C略12.已知實數(shù)x,y滿足不等式組,則z=|x|+y的取值范圍為
.參考答案:[﹣1,]
【考點】簡單線性規(guī)劃.【分析】先畫出滿足條件的平面區(qū)域,通過討論x的范圍,求出直線的表達(dá)式,結(jié)合圖象從而求出z的范圍.【解答】解:畫出滿足條件的平面區(qū)域,如圖示:,z=|x|+y=,當(dāng)M(x,y)位于D中y軸的右側(cè)包括y軸時,平移直線:x+y=0,可得x+y∈[﹣1,2],當(dāng)M(x,y)位于D中y軸左側(cè),平移直線﹣x+y=0,可得z=﹣x+y∈(﹣1,].所以z=|x|+y的取值范圍為:[﹣1,].故答案為:[﹣1,].13.已知向量,若,則=________.參考答案:試題分析:,..考點:1向量數(shù)量積公式;2向量的模.14.已知函數(shù)f(x)=|x2﹣2ax+b|(x∈R),給出下列四個命題:①f(x)必是偶函數(shù);②當(dāng)f(0)=f(2)時,f(x)的圖象必關(guān)于x=1對稱;③若a2﹣b≤0,則f(x)在區(qū)間[a,+∞)上是增函數(shù);④f(x)有最大值|a2﹣b|.其中所有真命題的序號是
.參考答案:③【考點】函數(shù)奇偶性的判斷;函數(shù)單調(diào)性的判斷與證明;函數(shù)的最值及其幾何意義.【分析】當(dāng)a≠0時,f(x)不具有奇偶性,故①不正確;令a=0,b=﹣2,則f(x)=|x2﹣2|,此時f(0)=f(2)=2,但f(x)=|x2﹣2|的對稱軸為y軸而不關(guān)于x=1對稱,故②不正確;若b﹣a2≥0,即f(x)的最小值b﹣a2≥0時,f(x)=(x﹣a)2+(b﹣a2),顯然f(x)在[a,+∞)上是增函數(shù),故③正確;又f(x)無最大值,故④不正確.【解答】解:當(dāng)a≠0時,f(x)不具有奇偶性,①錯誤;令a=0,b=﹣2,則f(x)=|x2﹣2|,此時f(0)=f(2)=2,但f(x)=|x2﹣2|的對稱軸為y軸而不關(guān)于x=1對稱,②錯誤;又∵f(x)=|x2﹣2ax+b|=|(x﹣a)2+b﹣a2|,圖象的對稱軸為x=a.根據(jù)題意a2﹣b≤0,即f(x)的最小值b﹣a2≥0,f(x)=(x﹣a)2+(b﹣a2),顯然f(x)在[a,+∞)上是增函數(shù),故③正確;又f(x)無最大值,故④不正確.答案:③.【點評】本題考查函數(shù)的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答.15.某種種子每粒發(fā)芽的概率都為0.85,現(xiàn)播種了1000粒,對于沒有發(fā)芽的種子,每粒需再補種2粒,補種的種子數(shù)記為X,則X的數(shù)學(xué)期望_______.參考答案:300【分析】設(shè)沒有發(fā)牙的種子數(shù)為,則有,由題意可知服從二項分布,利用公式可以求出,進(jìn)而求出的數(shù)學(xué)期望.【詳解】設(shè)沒有發(fā)牙的種子數(shù)為,則有,由題意可知服從二項分布,即,,.16.f(x)=+xcosx在點A(,f())處的切線方程是
.參考答案:y=(2﹣)x+【考點】利用導(dǎo)數(shù)研究曲線上某點切線方程.【分析】求出導(dǎo)數(shù),求得切線的斜率,和切點,運用點斜式方程即可得到所求切線的方程.【解答】解:f(x)=+xcosx的導(dǎo)數(shù)為:f′(x)=+(cosx﹣xsinx),即有在點A(,f())處的切線斜率為:k=×2+(﹣×)=2﹣,f()=+??=,即有在點A(,f())處的切線方程為y﹣=(2﹣)(x﹣),即為y=(2﹣)x+.故答案為:y=(2﹣)x+.17.在中,若則的最大值為
▲
.參考答案:三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.設(shè)各項均為正數(shù)的數(shù)列的前項和為,滿足且構(gòu)成等比數(shù)列.(1)證明:;(2)求數(shù)列的通項公式;(3)證明:對一切正整數(shù),有.參考答案:19.(本小題滿分13分)已知函數(shù)為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線在點處的切線與x軸平行.(Ⅰ)求k的值;(Ⅱ)求的單調(diào)區(qū)間;(Ⅲ)設(shè),其中為的導(dǎo)函數(shù).證明:對任意.
參考答案:(I),由已知,,∴.(II)由(I)知,.設(shè),則,即在上是減函數(shù),由知,當(dāng)時,從而,當(dāng)時,從而.綜上可知,的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.(III)由(II)可知,當(dāng)時,≤0<1+,故只需證明在時成立.當(dāng)時,>1,且,∴.設(shè),,則,當(dāng)時,,當(dāng)時,,所以當(dāng)時,取得最大值.所以.綜上,對任意,.20.四棱錐P-ABCD,側(cè)面PAD是邊長為2的正三角形,底面ABCD為菱形,∠BDA=60°(1)證明:∠PBC=90°;(2)若PB=3,求直線AB與平面PBC所成角的正弦值參考答案:略21.如圖,在四棱柱中,底面,,,.
(Ⅰ)求證:平面;
(Ⅱ)求證:;
(Ⅲ)若,判斷直線與平面是否垂直?并說明理由.參考答案:【知識點】垂直平行【試題解析】(Ⅰ)證明:因為,平面,平面,
所以平面.
因為,平面,平面,
所以平面.
又因為,
所以平面平面.
又因為平面,
所以平面.
(Ⅱ)證明:因為底面,
底面,
所以.
又因為,,
所以平面.
又因為底面,
所以.
(Ⅲ)結(jié)論:直線與平面不垂直.
證明:假設(shè)平面,
由平面,得.
由棱柱中,底面,
可得,,
又因為,
所以平面,
所以.
又因為,
所以平面,
所以.
這與四邊形為矩形,且矛盾,
故直線與平面不垂直.
22.(本題滿分14分)本題共有2個小題,第1小題滿分8分,第2小題滿分6分.如圖所示,是一個矩形花壇,其中AB=6米,AD=4米.現(xiàn)將矩形花壇擴建成一個更大的矩形花園,要求:B在上,D在上,對角線過C點,且矩形的面積小于150平方米.(1)設(shè)長為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并寫出該函數(shù)的定義域;(2)當(dāng)?shù)拈L度是多少時,矩形的面積最小?并求最小面積.
參考答案:解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)產(chǎn)品代理銷售協(xié)議
- 知識產(chǎn)權(quán)轉(zhuǎn)讓協(xié)議合同范本
- 2024智能建筑項目合作協(xié)議
- 擔(dān)保人承擔(dān)的責(zé)任合同
- 財務(wù)文化建設(shè)活動計劃
- SSL與PKI技術(shù)融合:2024年趨勢展望3篇
- 人工合同模板范本下載
- 一年歲月一年收獲一年成長幼兒園工作總結(jié)
- 餐飲承包合同協(xié)議書范本
- 生物科技研究項目合作協(xié)議
- 部編新改版語文一年級下冊《語文園地四》教學(xué)設(shè)計
- 2025年北京鐵路局集團(tuán)招聘筆試參考題庫含答案解析
- 《藥品招商營銷概論》課件
- 曙光磁盤陣列DS800-G10售前培訓(xùn)資料V1.0
- 寺廟祈福活動方案(共6篇)
- 2025年病案編碼員資格證試題庫(含答案)
- 企業(yè)財務(wù)三年戰(zhàn)略規(guī)劃
- 2025新譯林版英語七年級下單詞表
- 提高膿毒性休克患者1h集束化措施落實率
- 山東省濟(jì)南市天橋區(qū)2024-2025學(xué)年八年級數(shù)學(xué)上學(xué)期期中考試試題
- 主播mcn合同模板
評論
0/150
提交評論