高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題第10講 恒成立能成立3種常見題型(含解析)_第1頁
高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題第10講 恒成立能成立3種常見題型(含解析)_第2頁
高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題第10講 恒成立能成立3種常見題型(含解析)_第3頁
高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題第10講 恒成立能成立3種常見題型(含解析)_第4頁
高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題第10講 恒成立能成立3種常見題型(含解析)_第5頁
已閱讀5頁,還剩26頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第10講恒成立能成立3種常見題型【考點分析】考點一:恒成立問題若函數(shù)SKIPIF1<0在區(qū)間D上存在最小值SKIPIF1<0和最大值SKIPIF1<0,則不等式SKIPIF1<0在區(qū)間D上恒成立SKIPIF1<0;不等式SKIPIF1<0在區(qū)間D上恒成立SKIPIF1<0;不等式SKIPIF1<0在區(qū)間D上恒成立SKIPIF1<0;不等式SKIPIF1<0在區(qū)間D上恒成立SKIPIF1<0;考點二:存在性問題若函數(shù)SKIPIF1<0在區(qū)間D上存在最小值SKIPIF1<0和最大值SKIPIF1<0,即SKIPIF1<0,則對不等式有解問題有以下結(jié)論:不等式SKIPIF1<0在區(qū)間D上有解SKIPIF1<0;不等式SKIPIF1<0在區(qū)間D上有解SKIPIF1<0;不等式SKIPIF1<0在區(qū)間D上有解SKIPIF1<0;不等式SKIPIF1<0在區(qū)間D上有解SKIPIF1<0;考點三:雙變量問題①對于任意的SKIPIF1<0,總存在SKIPIF1<0,使得SKIPIF1<0;②對于任意的SKIPIF1<0,總存在SKIPIF1<0,使得SKIPIF1<0;③若存在SKIPIF1<0,對于任意的SKIPIF1<0,使得SKIPIF1<0;④若存在SKIPIF1<0,對于任意的SKIPIF1<0,使得SKIPIF1<0;⑤對于任意的SKIPIF1<0,SKIPIF1<0使得SKIPIF1<0;⑥對于任意的SKIPIF1<0,SKIPIF1<0使得SKIPIF1<0;⑦若存在SKIPIF1<0,總存在SKIPIF1<0,使得SKIPIF1<0⑧若存在SKIPIF1<0,總存在SKIPIF1<0,使得SKIPIF1<0.【題型目錄】題型一:利用導(dǎo)數(shù)研究恒成立問題題型二:利用導(dǎo)數(shù)研究存在性問題題型三:利用導(dǎo)數(shù)處理恒成立與有解問題【典型例題】題型一:利用導(dǎo)數(shù)研究恒成立問題【例1】(2022·福建省福安市第一中學(xué)高二階段練習(xí))對任意正實數(shù)SKIPIF1<0,不等式SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞減,當SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞增,所以,SKIPIF1<0,SKIPIF1<0.故選:B.【例2】【2022年全國甲卷】已知函數(shù)SKIPIF1<0.(1)若fx≥0,求【答案】(1)(?【解析】(1)f(x)的定義域為(0,+∞f'(x)=(1x?1當x∈(0,1),f'(x)<0,f(x)單調(diào)遞減,當x∈(1,+若f(x)≥0,則e+1?a≥0,即a≤e+1,所以【例3】已知函數(shù)SKIPIF1<0.(1)討論函數(shù)的單調(diào)性;(2)若對任意的SKIPIF1<0,都有SKIPIF1<0成立,求SKIPIF1<0的取值范圍.【答案】(1)答案見解析;(2)SKIPIF1<0.【解析】【分析】(1)求SKIPIF1<0,分別討論SKIPIF1<0不同范圍下SKIPIF1<0的正負,分別求單調(diào)性;(2)由(1)所求的單調(diào)性,結(jié)合SKIPIF1<0,分別求出SKIPIF1<0的范圍再求并集即可.【詳解】解:(1)由已知定義域為SKIPIF1<0,SKIPIF1<0當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0恒成立,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0(舍)或SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.所以SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)由(1)可知,當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,若SKIPIF1<0對任意的SKIPIF1<0恒成立,只需SKIPIF1<0,而SKIPIF1<0恒成立,所以SKIPIF1<0成立;當SKIPIF1<0時,若SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0成立;若SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,不滿足SKIPIF1<0對任意的SKIPIF1<0恒成立.所以綜上所述:SKIPIF1<0.【例4】已知函數(shù)SKIPIF1<0(SKIPIF1<0是正常數(shù)).(1)當SKIPIF1<0時,求SKIPIF1<0的單調(diào)區(qū)間與極值;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的取值范圍;【答案】(1)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0的極大值是SKIPIF1<0,無極小值;(2)SKIPIF1<0.【解析】【分析】(1)求出函數(shù)的導(dǎo)函數(shù),解關(guān)于導(dǎo)函數(shù)的不等式即可求出函數(shù)的單調(diào)區(qū)間;(2)依題意可得SKIPIF1<0,設(shè)SKIPIF1<0,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得解;【詳解】解:(1)當SKIPIF1<0時,SKIPIF1<0,定義域為SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0的極大值是SKIPIF1<0,無極小值.(2)因為SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0恒成立,即SKIPIF1<0.設(shè)SKIPIF1<0,可得SKIPIF1<0,當SKIPIF1<0時SKIPIF1<0,當SKIPIF1<0時SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.【例5】已知函數(shù)SKIPIF1<0(1)求SKIPIF1<0的極值點;(2)若SKIPIF1<0對任意SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0是SKIPIF1<0的極小值點,無極大值點;(2)SKIPIF1<0.【解析】【分析】(1)利用導(dǎo)數(shù)研究函數(shù)的極值點.(2)由題設(shè)知:SKIPIF1<0在SKIPIF1<0上恒成立,構(gòu)造SKIPIF1<0并應(yīng)用導(dǎo)數(shù)研究單調(diào)性求最小值,即可求SKIPIF1<0的范圍.【詳解】(1)由題設(shè),SKIPIF1<0,∴SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增減;∴SKIPIF1<0是SKIPIF1<0的極小值點,無極大值點.(2)由題設(shè),SKIPIF1<0對SKIPIF1<0恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0遞減;SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0遞增;∴SKIPIF1<0,故SKIPIF1<0.【題型專練】1.(2022·四川廣安·模擬預(yù)測(文))不等式SKIPIF1<0恒成立,則實數(shù)k的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】由題可得SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,然后求函數(shù)SKIPIF1<0的最大值即得.【詳解】由題可得SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,令SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0的單調(diào)增區(qū)間為SKIPIF1<0,單調(diào)減區(qū)間為SKIPIF1<0;所以SKIPIF1<0,所以SKIPIF1<0.故選:D.2.(2022·北京·景山學(xué)校模擬預(yù)測)已知函數(shù)SKIPIF1<0.(1)當SKIPIF1<0時,求SKIPIF1<0的極值;(2)若對任意的SKIPIF1<0,SKIPIF1<0恒成立,求實數(shù)a的取值范圍.【答案】(1)極小值是SKIPIF1<0,無極大值.(2)SKIPIF1<0【解析】【分析】(1)由題設(shè)可得SKIPIF1<0,根據(jù)SKIPIF1<0的符號研究SKIPIF1<0的單調(diào)性,進而確定極值.(2)SKIPIF1<0對任意的SKIPIF1<0恒成立,轉(zhuǎn)化為:SKIPIF1<0對任意的SKIPIF1<0恒成立,令SKIPIF1<0,通過求導(dǎo)求SKIPIF1<0的單調(diào)性進而求得SKIPIF1<0的最大值,即可求出實數(shù)a的取值范圍.(1)當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.當SKIPIF1<0時,SKIPIF1<0取得極小值且為SKIPIF1<0,無極大值.(2)SKIPIF1<0對任意的SKIPIF1<0恒成立,則SKIPIF1<0對任意的SKIPIF1<0恒成立,令SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0.實數(shù)a的取值范圍為:SKIPIF1<0.3.(2022·新疆克拉瑪依·三模(文))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間;(2)若對任意SKIPIF1<0,不等式SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0,(2)SKIPIF1<0【解析】【分析】(1)求函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間,即解不等式SKIPIF1<0;(2)參變分離得SKIPIF1<0,即求SKIPIF1<0的最小值.(1)SKIPIF1<0定義域為SKIPIF1<0,SKIPIF1<0SKIPIF1<0即SKIPIF1<0解得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增(2)對任意SKIPIF1<0,不等式SKIPIF1<0恒成立,即SKIPIF1<0恒成立,分離參數(shù)得SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.所以SKIPIF1<0,即SKIPIF1<0,故a的取值范圍是SKIPIF1<0.4.(2022·內(nèi)蒙古赤峰·三模(文))已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的最小值;(2)若SKIPIF1<0恒成立,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)求函數(shù)在定義域上的最值即可;(2)由原不等式恒成立分離參數(shù)后得SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)求最小值即可.(1)由已知得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.故SKIPIF1<0.(2)SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上恒成立.令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0(舍去).當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.故SKIPIF1<0,所以SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.5.【2020年新高考1卷(山東卷)】已知函數(shù)SKIPIF1<0.(1)當SKIPIF1<0時,求曲線SKIPIF1<0在點SKIPIF1<0處的切線與兩坐標軸圍成的三角形的面積;(2)若不等式SKIPIF1<0恒成立,求a的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】【分析】(1)利用導(dǎo)數(shù)的幾何意義求出在點SKIPIF1<0切線方程,即可得到坐標軸交點坐標,最后根據(jù)三角形面積公式得結(jié)果;(2)方法一:利用導(dǎo)數(shù)研究函數(shù)SKIPIF1<0的單調(diào)性,當a=1時,由SKIPIF1<0得SKIPIF1<0,符合題意;當a>1時,可證SKIPIF1<0,從而SKIPIF1<0存在零點SKIPIF1<0,使得SKIPIF1<0,得到SKIPIF1<0,利用零點的條件,結(jié)合指數(shù)對數(shù)的運算化簡后,利用基本不等式可以證得SKIPIF1<0恒成立;當SKIPIF1<0時,研究SKIPIF1<0.即可得到不符合題意.綜合可得a的取值范圍.【詳解】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,∴切點坐標為(1,1+e),∴函數(shù)SKIPIF1<0在點(1,f(1)處的切線方程為SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0切線與坐標軸交點坐標分別為SKIPIF1<0,∴所求三角形面積為SKIPIF1<0.(2)[方法一]:通性通法SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0∴g(x)在SKIPIF1<0上單調(diào)遞增,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0成立.當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴存在唯一SKIPIF1<0,使得SKIPIF1<0,且當SKIPIF1<0時SKIPIF1<0,當SKIPIF1<0時SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0SKIPIF1<0>1,∴SKIPIF1<0∴SKIPIF1<0恒成立;當SKIPIF1<0時,SKIPIF1<0∴SKIPIF1<0不是恒成立.綜上所述,實數(shù)a的取值范圍是[1,+∞).[方法二]【最優(yōu)解】:同構(gòu)由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在R上單調(diào)遞增.由SKIPIF1<0,可知SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0.所以當SKIPIF1<0時,SKIPIF1<0單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0單調(diào)遞減.所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0.所以a的取值范圍為SKIPIF1<0.[方法三]:換元同構(gòu)由題意知SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.于是SKIPIF1<0.由于SKIPIF1<0,而SKIPIF1<0在SKIPIF1<0時為增函數(shù),故SKIPIF1<0,即SKIPIF1<0,分離參數(shù)后有SKIPIF1<0.令SKIPIF1<0,所以SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0單調(diào)遞減.所以當SKIPIF1<0時,SKIPIF1<0取得最大值為SKIPIF1<0.所以SKIPIF1<0.[方法四]:因為定義域為SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增.因為SKIPIF1<0,所以SKIPIF1<0時,有SKIPIF1<0,即SKIPIF1<0.下面證明當SKIPIF1<0時,SKIPIF1<0恒成立.令SKIPIF1<0,只需證當SKIPIF1<0時,SKIPIF1<0恒成立.因為SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增,則SKIPIF1<0.因此要證明SKIPIF1<0時,SKIPIF1<0恒成立,只需證明SKIPIF1<0即可.由SKIPIF1<0,得SKIPIF1<0.上面兩個不等式兩邊相加可得SKIPIF1<0,故SKIPIF1<0時,SKIPIF1<0恒成立.當SKIPIF1<0時,因為SKIPIF1<0,顯然不滿足SKIPIF1<0恒成立.所以a的取值范圍為SKIPIF1<0.【整體點評】(2)方法一:利用導(dǎo)數(shù)判斷函數(shù)SKIPIF1<0的單調(diào)性,求出其最小值,由SKIPIF1<0即可求出,解法雖稍麻煩,但是此類題,也是本題的通性通法;方法二:利用同構(gòu)思想將原不等式化成SKIPIF1<0,再根據(jù)函數(shù)SKIPIF1<0的單調(diào)性以及分離參數(shù)法即可求出,是本題的最優(yōu)解;方法三:通過先換元,令SKIPIF1<0,再同構(gòu),可將原不等式化成SKIPIF1<0,再根據(jù)函數(shù)SKIPIF1<0的單調(diào)性以及分離參數(shù)法求出;方法四:由特殊到一般,利用SKIPIF1<0可得SKIPIF1<0的取值范圍,再進行充分性證明即可.題型二:利用導(dǎo)數(shù)處理存在性問題【例1】(2022·河北秦皇島·三模)函數(shù)SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)題意,將問題轉(zhuǎn)化為求解函數(shù)SKIPIF1<0的最大值問題,先通過導(dǎo)數(shù)方法求出函數(shù)SKIPIF1<0的最大值,進而求出答案.【詳解】因為SKIPIF1<0,所以SKIPIF1<0.由題意,只需SKIPIF1<0.當SKIPIF1<0SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,故實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D.【例2】已知函數(shù)SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0的極小值為SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0有極大值.(1)求函數(shù)SKIPIF1<0;(2)存在SKIPIF1<0,使得SKIPIF1<0成立,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】【分析】(1)求導(dǎo)后,根據(jù)SKIPIF1<0和SKIPIF1<0,解得SKIPIF1<0即可得解;(2)轉(zhuǎn)化為SKIPIF1<0,再利用導(dǎo)數(shù)求出函數(shù)SKIPIF1<0在SKIPIF1<0上的最小值,然后解不等式SKIPIF1<0可得結(jié)果.(1)∵SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,經(jīng)檢驗SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0滿足題意,∴SKIPIF1<0;(2)存在SKIPIF1<0,使得SKIPIF1<0,等價于SKIPIF1<0,∵SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,又SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上的最小值為SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.【例3】(2022·遼寧·高二階段練習(xí))已知SKIPIF1<0,若在SKIPIF1<0上存在x使得不等式SKIPIF1<0成立,則a的最小值為______.【答案】SKIPIF1<0【分析】將原式化為SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,求導(dǎo)得函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,即得SKIPIF1<0,兩邊取對數(shù)分離參數(shù)SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)求解函數(shù)SKIPIF1<0的最小值即可.【詳解】解:不等式SKIPIF1<0成立,即SKIPIF1<0成立,因為SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,因為在SKIPIF1<0上存在x使得不等式SKIPIF1<0成立,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,故當SKIPIF1<0時,SKIPIF1<0取得最小值SKIPIF1<0.所以SKIPIF1<0,即a的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【題型專練】1.已知函數(shù)SKIPIF1<0.(1)當SKIPIF1<0時,求SKIPIF1<0的單調(diào)區(qū)間;(2)若存在SKIPIF1<0,使得SKIPIF1<0成立,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)單調(diào)遞減區(qū)間為SKIPIF1<0,單調(diào)遞增區(qū)間為SKIPIF1<0;(2)SKIPIF1<0.【解析】【分析】(1)當SKIPIF1<0時,SKIPIF1<0,得出SKIPIF1<0的定義域并對SKIPIF1<0進行求導(dǎo),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,即可得出SKIPIF1<0的單調(diào)區(qū)間;(2)將題意等價于SKIPIF1<0在SKIPIF1<0內(nèi)有解,設(shè)SKIPIF1<0,即在SKIPIF1<0上,函數(shù)SKIPIF1<0,對SKIPIF1<0進行求導(dǎo),令SKIPIF1<0,得出SKIPIF1<0,分類討論SKIPIF1<0與區(qū)間SKIPIF1<0的關(guān)系,并利用導(dǎo)數(shù)研究函數(shù)SKIPIF1<0的單調(diào)和最小值,結(jié)合SKIPIF1<0,從而得出實數(shù)SKIPIF1<0的取值范圍.(1)解:當SKIPIF1<0時,SKIPIF1<0,可知SKIPIF1<0的定義域為SKIPIF1<0,則SKIPIF1<0,可知當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0;所以SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,單調(diào)遞增區(qū)間為SKIPIF1<0.(2)解:由題可知,存在SKIPIF1<0,使得SKIPIF1<0成立,等價于SKIPIF1<0在SKIPIF1<0內(nèi)有解,可設(shè)SKIPIF1<0,即在SKIPIF1<0上,函數(shù)SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(舍去),當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0;當SKIPIF1<0時,即SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,得SKIPIF1<0,不合題意;當SKIPIF1<0,即SKIPIF1<0時,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,不符合題意;綜上得,實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.【點睛】思路點睛:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,以及利用導(dǎo)數(shù)解決不等式成立的綜合問題:(1)利用導(dǎo)數(shù)解決單調(diào)區(qū)間問題,應(yīng)先確定函數(shù)的定義域,否則,寫出的單調(diào)區(qū)間易出錯;利用導(dǎo)數(shù)解決含有參數(shù)的單調(diào)性問題,要注意分類討論和化歸思想的應(yīng)用;(2)利用導(dǎo)數(shù)解決不等式的綜合問題的一般步驟是:構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究的單調(diào)區(qū)間和最值,再進行相應(yīng)證明.2.(2022·河北深州市中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0是SKIPIF1<0的極值點,確定SKIPIF1<0的值;(2)若存在SKIPIF1<0,使得SKIPIF1<0,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0,(2)SKIPIF1<0【分析】(1)由已知可得出SKIPIF1<0,求出SKIPIF1<0的值,然后利用導(dǎo)數(shù)分析函數(shù)SKIPIF1<0的單調(diào)性,結(jié)合極值點的定義檢驗即可;(2)由參變量分離法可得出SKIPIF1<0,利用導(dǎo)數(shù)求出函數(shù)SKIPIF1<0的最大值,即可得出實數(shù)SKIPIF1<0的取值范圍.(1)解:因為SKIPIF1<0,該函數(shù)的定義域為SKIPIF1<0,則SKIPIF1<0,由已知可得SKIPIF1<0,可得SKIPIF1<0,此時SKIPIF1<0,列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0增極大值減所以,函數(shù)SKIPIF1<0在SKIPIF1<0處取得極大值,合乎題意,故SKIPIF1<0.(2)解:存在SKIPIF1<0,使得SKIPIF1<0可得SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞增,當SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞減,則SKIPIF1<0,所以,SKIPIF1<0,解得SKIPIF1<0,因此,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.3.已知函數(shù)SKIPIF1<0,設(shè)SKIPIF1<0在點SKIPIF1<0處的切線為SKIPIF1<0(1)求直線SKIPIF1<0的方程;(2)求證:除切點SKIPIF1<0之外,函數(shù)SKIPIF1<0的圖像在直線SKIPIF1<0的下方;(3)若存在SKIPIF1<0,使得不等式SKIPIF1<0成立,求實數(shù)SKIPIF1<0的取值范圍【答案】(1)y=x﹣1;(2)見詳解;(3)(﹣∞,1).【解析】【分析】(1)求導(dǎo)得SKIPIF1<0,由導(dǎo)數(shù)的幾何意義k切=f′(1),進而可得答案.(2)設(shè)函數(shù)h(x)=f(x)﹣(x﹣1)=SKIPIF1<0﹣x+1,求導(dǎo)得h′(x),分析h(x)的單調(diào)性,最值,進而可得f(x)﹣(x﹣1)≤0,則除切點(1,0)之外,函數(shù)f(x)的圖象在直線的下方.(3)若存在x∈(1,+∞),使得不等式a<SKIPIF1<0成立,令g(x)=SKIPIF1<0,x>1,只需a<g(x)max.【詳解】(1)SKIPIF1<0,由導(dǎo)數(shù)的幾何意義k切=f′(1)=1,所以直線m的方程為y=x﹣1.(2)證明:設(shè)函數(shù)h(x)=f(x)﹣(x﹣1)=SKIPIF1<0﹣x+1,SKIPIF1<0,函數(shù)定義域為(0,+∞),令p(x)=1﹣lnx﹣x2,x>0,p′(x)=﹣SKIPIF1<0﹣2x<0,所以p(x)在(0,+∞)上單調(diào)遞減,又p(1)=0,所以在(0,1)上,p(x)>0,h′(x)>0,h(x)單調(diào)遞增,在(1,+∞)上,p(x)<0,h′(x)<0,h(x)單調(diào)遞減,所以h(x)max=h(1)=0,所以h(x)≤h(1)=0,所以f(x)﹣(x﹣1)≤0,若除切點(1,0)之外,f(x)﹣(x﹣1)<0,所以除切點(1,0)之外,函數(shù)f(x)的圖象在直線的下方.(3)若存在x∈(1,+∞),使得不等式f(x)>a(x﹣1)成立,則若存在x∈(1,+∞),使得不等式SKIPIF1<0>a成立,即若存在x∈(1,+∞),使得不等式a<SKIPIF1<0成立,令g(x)=SKIPIF1<0,x>1,g′(x)=SKIPIF1<0=SKIPIF1<0,令s(x)=x﹣1﹣(2x﹣1)lnx,x>1s′(x)=1﹣2lnx﹣(2x﹣1)?SKIPIF1<0SKIPIF1<0,令q(x)=﹣x﹣2xlnx+1,x>1q′(x)=﹣1﹣2lnx﹣2=﹣3﹣2lnx<0,所以在(1,+∞)上,q(x)單調(diào)遞減,又q(1)=0,所以在(1,+∞)上,q(x)<0,s′(x)<0,s(x)單調(diào)遞減,所以s(x)≤s(1)=0,即g′(x)≤0,g(x)單調(diào)遞減,又SKIPIF1<0,所以a<1,所以a的取值范圍為(﹣∞,1).4.已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0在點SKIPIF1<0處的切線斜率為SKIPIF1<0.①求實數(shù)SKIPIF1<0的值;②求SKIPIF1<0的單調(diào)區(qū)間和極值.(2)若存在SKIPIF1<0,使得SKIPIF1<0成立,求SKIPIF1<0的取值范圍.【答案】(1)①SKIPIF1<0;②減區(qū)間為SKIPIF1<0,增區(qū)間為SKIPIF1<0,極小值為SKIPIF1<0,無極大值;(2)SKIPIF1<0.【解析】【分析】(1)求得函數(shù)的導(dǎo)數(shù)SKIPIF1<0,①根據(jù)題意得到SKIPIF1<0,即可求得SKIPIF1<0的值;②由①知SKIPIF1<0,結(jié)合導(dǎo)數(shù)的符號,以及極值的概念與計算,即可求解;(2)設(shè)SKIPIF1<0,根據(jù)存在SKIPIF1<0,使得SKIPIF1<0成立,得到SKIPIF1<0成立,結(jié)合導(dǎo)數(shù)求得函數(shù)SKIPIF1<0的單調(diào)性與最小值,即可求解.【詳解】(1)由題意,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0,①因為SKIPIF1<0在點SKIPIF1<0處的切線斜率為SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0.②由①得SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0;令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,當SKIPIF1<0時,函數(shù)SKIPIF1<0取得極小值,極小值為SKIPIF1<0,無極大值,綜上可得,函數(shù)SKIPIF1<0的減區(qū)間為SKIPIF1<0,增區(qū)間為SKIPIF1<0,極小值為SKIPIF1<0,無極大值.(2)因為SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0根據(jù)題意知存在SKIPIF1<0,使得SKIPIF1<0成立,即SKIPIF1<0成立,由SKIPIF1<0,可得SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以當SKIPIF1<0時,函數(shù)SKIPIF1<0取得最小值,最小值為SKIPIF1<0,所以SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.5.已知函數(shù)SKIPIF1<0.(1)當a=1時,求曲線SKIPIF1<0在x=1處的切線方程;(2)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(3)若存在SKIPIF1<0,使得SKIPIF1<0,求a的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0單增;SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單增,在SKIPIF1<0單減;(3)SKIPIF1<0.【解析】【分析】(1)求出函數(shù)導(dǎo)數(shù),將切線橫坐標代入得到斜率,再求出切點縱坐標,最后寫出切線方程;(2)求導(dǎo)后,通分,分SKIPIF1<0兩種情況討論得到單調(diào)區(qū)間;(3)當SKIPIF1<0時,代特值驗證即可,當SKIPIF1<0時,函數(shù)最大值大于0,解出即可.【詳解】由題意,SKIPIF1<0所以SKIPIF1<0所以切線方程為:SKIPIF1<0.(2)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單增;若SKIPIF1<0,則SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單增;SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單減.(3)由(2),若SKIPIF1<0,則SKIPIF1<0,滿足題意;若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,綜上:SKIPIF1<0.題型三:利用導(dǎo)數(shù)處理恒成立與有解問題【例1】(2022·福建省福安市第一中學(xué)高三階段練習(xí))設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0.若對SKIPIF1<0,都SKIPIF1<0,使得不等式SKIPIF1<0成立,則SKIPIF1<0的最大值為(

)A.0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】C【分析】由題意易知SKIPIF1<0恒成立,則可等價為對SKIPIF1<0,SKIPIF1<0恒成立,利用參變分離,可變形為SKIPIF1<0恒成立,易證SKIPIF1<0,則可得SKIPIF1<0,即可選出答案.【詳解】對SKIPIF1<0,都SKIPIF1<0,使得不等式SKIPIF1<0成立,等價于SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0恒成立,當且僅當SKIPIF1<0時,SKIPIF1<0,所以對SKIPIF1<0,SKIPIF1<0恒成立,即SKIPIF1<0,當SKIPIF1<0,SKIPIF1<0成立,當SKIPIF1<0時,SKIPIF1<0恒成立.記SKIPIF1<0,因為SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,所以SKIPIF1<0恒成立,即SKIPIF1<0所以SKIPIF1<0.所以SKIPIF1<0的最大值為1.故選:C.【點睛】本題考查導(dǎo)數(shù)在不等式的恒成立與有解問題的應(yīng)用,屬于難題,此類問題可按如下規(guī)則轉(zhuǎn)化:一般地,已知函數(shù)SKIPIF1<0,SKIPIF1<0(1)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(3)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(4)若SKIPIF1<0,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論