版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
4.PeriodicanomaliesofthenonmetalsandposttransitionmetalsReluctanceoffourth-rownonmetalstoexhibitmaximumvalenceThereisadefinitetendencyforthenonmetalsoftheforth-row,As,Se,Br,tobeunstableintheirmaximumoxidationstate.Forexample,AsCl5aswellasAsBr5andAsI5isunknownalthoughbothPCl5andSbCl5exist.TheonlystablearsenicpentahalideisAsF5.
Inoxygengroupthesamephenomenonisencountered.
TheenthalpiesofformationofSF6,SeF6,andTeF6are–1210,-1030,and–1315kJmol-1,respectively.ThisindicatesthatcomparablebondenergiesforS-FandTe-FbondsaremorestablethanSe-Fbond.Thereluctanceofbrominetoaccepta+7oxidationstateiswell-known.Perbromicacid(HBrO4)andperbromateion(BrO4-)hadnotbeensynthesizedbefore1968.Theyareunstable.Thustheperbromateionisastrongeroxidizingagentthaneitherperchlorate(ClO4-)orperiodate(IO4-).(83SeO42-→BrO4-+e-)Indicatingthestabilityof4s2tosomeextent.(2)Theinert-s-paireffectAmongtheheavyposttransitionmetalsthereisadefinitereluctancetoexhibitthehighestpossibleoxidationstateorthegreatestcovalence,whichmeansthattheheavyelementsinCarbongroupusuallyshow+2oxidationstate(divalent,asGe2+,Sn2+,Pb2+)andBoronGroup+1oxidationstate(monovalent).Itispossibletopreparedivalentgermanium,tin,andleadcompounds.IncarbongroupTinhasastable+2oxidationstateinadditionto+4andforleadthe+2oxidationstateisfarmoreimportant.OtherexamplesarestableTl+andBi3+.Thesestableoxidationstates,twolessthanthehighestoxidationstatesoftheelements,haveledtothesuggestionthatthepairofselectronsisinertandonlythepelectronsareemployedinthebonding.Ithasalsobeensuggestedthattheunreactivityofmetallicmercury(Hg)isduetotheinert6s–pairelectrons,becausetheonlybondingelectronsofmercuryare6selectrons,whichresultsintheweakmetalbondandfurthermoretheliquidstateofHg.(3)AnomaliesofGroupsBoronandCarbonCarbongroupinvolvesatendencyforGetoresembleCmorethanSi.Someexamplesare:(i)Reductionofhalideswithzincandhydrochloricacid.GeresemblesCandSnresemblesSi.ZnR3C-X→R3C-HHClZnR3Si-X→NoR3Si-HHClZnR3Ge-X→R3Ge-HHClZnR3Sn-X→NoR3Sn-HHCl(ii)Reactionoforganolithiumcompoundswith(C6H5)3YH(Y=ElementofCarbonGroup).Triphenylmethaneandtriphenylgermanedifferintheirreactionwithorganolithiumcompoundsfromtriphenylsilaneandtriphenylstannane:φ3CH+LiR→LiCφ3+RHφ3SiH+LiR→φ3SiR+LiHφ3GeH+LiR→LiGeφ3+RHφ3SnH+LiR→φ3SnR+LiH(iii)BoronGroupTheelementsofBoronGroupshowsimilarpropertiesalthoughthedifferencesarenotsonoticeableasforCarbonGroup.Itmaybenotedthatthecovalentradiusgallium(Ga)appearstobeclosetothatofaluminum(Al):rGa=120pm,rAl=130pmThefirstionizationenergiesofthesetwoelementsaresurprisinglyclose:I1(Al)=578kJmol-1,I1(Ga)=579kJmol-1(Gaisjustafterthefull3d10,calledScandiumContractionsimilartoLanthanideContraction)InBoronGroup,thesumofthefirstthreeionizationenergiesshowsasimilartendencyasCarbonGroup:IonizationEnergy(kJmol-1) I1+I2+I3 I1+I2+I3+I4
B=6887 C=14282Al=5044 Si=9950Ga=5521Ge=10011In=5084 Sn=8994Tl=5439 Pb=8617(4s2and6s2pairsaremoreinert)(4)Loose-compactModelRelativisticEffectsAccordingtoEinstein’stheoryofrelativity,themassmofaparticleincreasesfromitsrestmassm0whenitsvelocityvapproachesthespeedoflight,c,andmisthengivenbytheequation:
m=m0/[1-(v/c)2]1/2Forahydrogenatom,theBohrmodeloftheatomleadstothevelocityoftheelectronbeingexpressedbytheequation:
v=Ze2/(2ε0h)=2.167×106m/s=1au(atomicunit)Comparewiththespeedoflight:c=2.998×108m/s=137auThemassof1selectronofHatomisclosetom0(m/m0=1.00003).However,foranatomwithatomicnumberZ,thevelocityof1selectronofthisatomreachesapproximatelyZau.e.g.Z=80,Hg,v/c=0.58,leadingtom=1.2m0
SincetheradiusoftheBohrorbitisgivenbytheequation:
r=(n2h2ε0)/(πmZe2)theincreaseinmresultsinanapproximately20%contractionoftheradiusofthe1s(n=1)orbital;thisiscalleddirectrelativisticcontraction.Othersorbitalsareaffectedinasimilarwayandasaconsequence,whenZishigh,sorbitalshavediminishedoverlapwithorbitalsofotheratoms.Adetailedtreatmentshowsthatporbitalsalsoundergoadirectrelativisticcontraction.Ontheotherhand,dorbitalsundergoanindirect
relativisticexpansion;asimilarargumentappliestoforbitals.Withincreasingnucleinumber1s2pairwillbegraduallyattractedtothenuclei.TheshieldingparameterontotheelectronsofthesecondshellwillbehigherthanthatexpectedbySlater’sRules.Thus,theseelectronsarein“l(fā)oose”state.Thentheeffectivenuclearchargeontotheelectronsofthethirdshellincreasesandtheseelectronsarein“compact”state.Thiseffectextendsoutershellsonebyonealternatively.Loose-compacteffect
ForIA,IIAelementsPeriod234567Compact1s21s21s21s21s21s2Loose2s1-22s22p62s22p62s22p62s22p62s22p6Compact3s1-23s23p63s23p63s23p63s23p6LooseΔsmall4s1-24s24p64s24p64s24p6CompactΔbig5s1-25s25p65s25p6LooseΔsmall6s1-26s26P6CompactΔbig7s1-2ΔsmallCsandBaarethemostelectropositiveinIAandIIA,respectively.CsexhibitsthehighestatomicradiumamongtheknownatomsofPeriodicTable.MLiNaKRbCsI1/kJmol-1520496419403376Δ24
77
16
62χ0.980.930.820.820.79Δ
0.05
0.11
0.00
0.03r/pm156186231243265Δ30
45
12
22FortheotherelementsPeriod23456Compact1s21s21s21s21s2Loose2s22p1-62s22p62s22p62s22p62s22p6Compact3s23p1-63s23p63s23p63d103s23p63d10Loose3d104s24p64s24p64d104f14Compact4s24p1-64d105s25p6Loose5s25p1-65d10Compact6s26p1-6Therearetwoadditionaleffectsshouldbeconsidered,fortheneighboringshells:s2andd10
haveverysmallshieldingparameters.Therefore,weshouldconsiderthesumofthesethreeeffects.Forthes-andd-block(innerp6),nochanges.Fortheotherelements:PeriodShellL-Ceffects2ord10effectSum2 2s22p1-6Lweak C C3 3s23p1-6C L L*4 4s24p1-6C C C55s25p1-6L C L6 6s26p1-6Cstrong C C
4s2,6s2,inerts-paireffect*isrelativelyweakerthanthatofPeriod2and4ΔofI1orEA1show“big,small,big,small”trendfromPeriod2to6.Electronicconfigurationofd-block3dVd3s2Crd5s1Mnd5s2Fed6s2Cod7s2Nid8s24dNbd4s1Mod5s1Tcd5s2Rud7s1Rhd8s1Pdd10s05dTad3s2Wd4s2Red5s2Osd6s2Ird7s2Ptd9s14d-blockmetalshavemoreexceptioncomparedwith3dor5d-blockmetals.3dL,4sC;4dC,5sL;5dL,6sC (<d10)Theenergylevelgapbetween4dand5sisbigerwhichfavorsloweringthesumenrergy.ElementCuAgAuPeriod456Configuration3d104s14d105s15d106s1(n-1)d10LCLns1CLCOxidationstate+I,+II+I+I,+IIIAtomicRadium/pm127.8144.4144.2I1/kJmol-1745.5731890I2/kJmol-11957.920741980ThehighestorlowestvaluesofAginthegroupisascribedto“4d10compact,5sloose”→e.g.I1small,I2large1.4ConsiderationBasedonThermodynamicsandKineticsAgoodworkingknowledgeofthermodynamicsisinvaluabletoachemist.Theyareparticularlyinterestedinquantitativeexpressionsforthedrivingforceofchemicalreactions.Thedrivingforcecanbemeasuredintermsofthefreeenergychange(ΔG),theequilibriumconstant(K),thepotentialofthereaction(E),oracombinationofthechangesinheatcontent(ΔH)andentropy(ΔS).Therelationbetweenthesethermodynamicfunctions,anddefinitionsofsomeoftheterms,follow.ΔG=-nEF=-RTIn(K/Q)=ΔH-TΔSHerenisthenumberoffaradaysofelectricityinvolvedinthereaction,andQisthereactionquotient,ortheproductoftheactivitiesoftheresultingsubstancesdividedbytheproductoftheactivitiesofthereactingsubstances,eachactivityraisedtoapowerequaltothecoefficientofthesubstanceinthechemicalequation.aA+bB→cC+dDQ={(fC[C])c(fD[D])d}/{(fA[A])a(fB[B])b}where,a,b,c,anddarecoefficients.Theactivitiesofpuresolidandliquidsubstancesaretakentobeunity.Asafairapproximation,theactivityofagaseoussubstanceisthepartialpressureofthatsubstance,expressedinatmospheres.Forasubstanceinadiluteaqueoussolution,theactivityisroughlyequaltotheconcentration,expressedeitherasmolality(molesperkilogramofwater)ormolarity(molesperliterofsolution).Forconcentratedsolutions,theseapproximationscannotbeused;activitycoefficientdataarerequired.ItwillbenotedthattheequilibriumconstantKisthevalueofQatequilibrium.WhenQ=1(whichisthecasewhenallthereactantsandproductsareatunitactivity),thethermodynamicfunctionspossesstheir"standard"values:ΔG0=-nE0F=-RTInK=ΔH0-TΔS0Weusethermodynamicaldatatoconsidersyntheticproblem.
e.g.Letussupposethatwewishtoprepareperiodate(H3IO62-)byoxidizingiodate(IO3-)withsomeaqueousoxidizingagent.Wecanseethattheperiodate-iodatecouplehasapotentialof1.6Vinacidsolutionsandapotentialof0.7Vinbasicsolutions.H5IO6+H++2e=IO3-+3H2OE0=1.60VH3IO62-+2e=IO3-+3OH-E0=0.70V
Anyoxidizingagentwithareductionpotentialmorepositivethan1.6Vinacidsolutionsormorepositivethan0.7Vinbasicsolutionsisthermodynamicallycapableofoxidizingiodatetoperiodate.Inpractice,hypobromite(BrO-)orhypochlorite(ClO-)isusuallyused,becausetheseoxidizingagentsreactwithreasonablerapidityandarerelativelycheap.Eithermaybeconvenientlypreparedbydissolvingtheappropriatehalogeninanalkalinesolution:Ifweusehypochlorite(ClO-)asoxidizingagent,thereactionis:ClO-+IO3-+OH-+H2O=H3IO62-+Cl-E=0.19VTherefore,periodate(H3IO62-)canbepreparedbyoxidizingiodate(IO3-)withhypochlorite(ClO-)inanalkalinesolution.Whenweworkwiththermodynamicdata,itisalwaysimportanttokeepinmindthatthermodynamicscantelluswhetherareactioniscapableoftakingplace,butitcannottellusthereactionrate.Thus,areactionmaybethermodynamicallyfavored(ΔG<O)andyetproceedextremelyslowly.Therefore,bothkineticsandthermodynamicsmustbeconsidered.AmmoniaSynthesis
TheHaberprocessfortheindustrialsynthesisofammoniaisawell-knownapplicationofbothequilibriumandkineticconsiderationsinsynthesis.Hydrogenandnitrogenreactathightemperaturesandpressuresandinthepresenceofanironcatalystaccordingtothereversiblereaction:N2(g)+3H2(g)=2NH3(g)
TheeffectoftemperatureandpressureontheequilibriumisgivenintheTable.Theformationofammoniaisobviouslyfavoredbybothlowtemperaturesandhighpressures,butifthetemperaturefallsmuchbelow400℃,therateofthecatalyzedreactionistooslowforeconomicalproduction.Ontheotherhand,ifthetemperatureistoohigh,theequilibriumpressureofammoniaistoolowforsatisfactoryyields.Inpractice,pressuresaround1000atmandtemperaturesaround500℃areemployed.DiamondSynthesis
Diamondisthermodynamicallyunstablewithrespecttographiteat1atmpressureatalltemperatures.Fortheprocess,Cgraphite→Cdiamond
ΔG0=692calmole-1at25℃andΔG0=2400calmole-1at1200℃Inasmuchasthemolarvolumesofdiamondandgraphiteare3.42and5.34cm3,respectively,hencethedensitiesofdiamondandgraphiteare3.541and2.266gcm-3.Therefore,thedrivingforcefortheconversionisincreasedbyincreasingthepressure.
AplotofthepressurerequiredtomakeΔG=0againsttemperatureisgivenintheFigure.
Forthereactiontoproceedatanappreciablerate,itisnecessarytogototemperaturesaboveapproximately1800K.Therefore,asshownintheFigure,pressuregreaterthanabout60,000atmisrequiredinthesynthesis.Anotherimportantfeatureistheuseofasolventtopermittakingapartthegraphitelatticeatom-by-atomandbuildingtheatomsintothediamondlattice.Inthefirstsynthesisofadiamond,FeSwasthesolvent;thetemperaturewasabout1920K;thepressurewasabout90,000atm,andthereactiontimewas3min.
Inrecentyears,anumberofinvestigatorshavesucceededingrowingdiamondsatlowpressuresbypyrolyzingthevaporsoforganiccompounds,usingChemicalVaporDeposition(CVD)method.Oneprocessinvolvespassingmethane,atapressurearound0.2mmHg(mercury),overadiamondseedcrystalatabout1050℃.Afterdepositionofcarbonontheseedcrystal,anygraphitethathasformediseliminatedbyreactionwithhydrogenat1033℃and50atm.Therefore,theequilibriumismovedtowardthedirectionofdiamondformation.(NonequilibriumThermodynamics)1.5AcidsandBasesChemicalreactionsincludethreetypesofreactions:RedoxreactionCoordinationreactionDoubledecompositionreaction(containingAcid-basereaction)Onthestandofchemicalbond,achemicalreactioninvolvestheformationand/orcrackofoneormorebonds;Onthestandofenergy,achemicalreactionisaccompaniedwithabsorptionorreleaseofenergy;Onthestandofchargedistribution,chargedensitiesofreactantsandproductswillre-distributealongtheenergy-favoredpath.
Duringredoxreaction,chargestransferamongtheatomsandtheoxidationstatesoftheatomschange;Duringcoordinationreaction,chargestransferamongthecentralatom/ionandligands;Duringdoubledecompositionreaction,chargesredistributeortransferamongthereactantsbuttheoxidationstatesremainunchanged.
Accordingtosomedefinitionsbelow,thesethreetypesofreactionscanbesimplybelongtoacid-basereaction.1.5.1Definitionsofacidsandbases
Therearemanydifferentdefinitionsofacidsandbases.Thefirstrecognitionoftheexistenceoftheclassesofcompoundwenowidentifyasacidsandbaseswerebasedontasteandfeel:acidsweresourandbasesfeltsoapy.Hereweintroducesomemoderndefinitions.1.Br?nsted-LowrydefinitionIn1923,J.N.Br?nstedandT.M.Lowryindependentlysuggestedthatacidsbedefinedasprotondonorsandbasesasprotonacceptors.
AcidBaseH3O+
+OH-
2H2ONH4+
+NH2-
2NH3H3SO4+
+HSO4-
2H2SO4NH4+
+S2-
NH3+HS-Thisdefinitionalsointroducedtheconceptofconjugateacidsandbasesanddescribedthereactionsasoccurringbetweenastrongeracidandbasetoformaweakeracidandbase:H3O++NO2-
→H2O+HNO2acid1base2base1acid2Conjugateacid-basepairs:AcidBase
H3O+H2O
HNO2NO2-
H2OistheconjugatebaseofH3O+andHNO2istheconjugateacidof
NO2-.Thedirectionofthereactionalwaysfavorstheformationofweakeracidsorbasesthanthereactants.H3O+isastrongeracidthanHNO2andNO2-isastrongerbasethanH2O.2.Lux-FlooddefinitionIncontrasttotheBr?nsted-Lowrydefinitionthatemphasizestheprotonastheprincipalspeciesinacid-basereactions,thedefinitionproposedbyLuxandextendedbyFlooddescribesacid-basebehaviorintermsoftheoxideion(O2-).Acidsaredefinedasoxideionacceptorsandbaseasoxideiondonors.Thisconceptcanbeadvancedtotreatnonprotonicsystems,suchasthesystemofmoltenoxide.
AcidBase
SiO2
+CaO
CaSiO3
H2O+CaO
Ca(OH)2
TiO2
+BaCO3
BaTiO3+CO2O2-
3.IonotropicdefinitionAccordingtothisdefinition,theacidisdefinedasacharacteristiccationdonorandthebaseasacharacteristiccationacceptor.Br?nsted-Lowrydefinitionisoneexamplethatdefinesproton(H+)asthecharacteristiccation.Andalso,theacidcanbedefinedasacharacteristicanionacceptorandthebaseasacharacteristicaniondonor.Lux-Flooddefinitionisoneexamplethatdefinesoxideion(O2-)asthecharacteristicanion.4.Solventsystemdefinition
Manysolventsautoionizewiththeformationofacationicandananionicspeciesasdoeswater:2H2O?
H3O++OH-2NH3
?NH4++NH2-2H2SO4?H3SO4++HSO4-2OPCl3
?
OPCl2++OPCl4-2BrF3
?BrF2++BrF4-Forthetreatmentofacid-basereactions,itisconvenienttodefineanacidasaspeciesthatincreasestheconcentrationofthecharacteristiccationofthesolventandabaseasaspeciesthatincreasestheconcentrationofthecharacteristicanion.
e.g.Inwater:HCl(g)+H2O(l)H3O+(aq)+Cl-(aq)
AcidBaseHClincreasestheconcentrationofthecharacteristiccation,[H3O+],inwater,thusHClisanacid.NaOH(g)+xH2O(l)Na(H2O)x+(aq)+OH-(aq)
BaseAcidNaOHisabase.InPOCl3FeCl3(s)+POCl3(l)→POCl2+(sol)+FeCl4-(sol)AcidBaseSOCl2(l)+POCl3(l)
→POCl4-(sol)+SOCl+(sol)BaseAcid(亞硫酰氯)InBrF3SbF5
+BrF3
→BrF2++SbF6-AcidBaseKFinBrF3F-+BrF3→BrF4-
BaseAcidClassifictionofsolvents
ProticSolventsSolventAcidCationBaseAnionpKion(25oC)B.P.(oC)H2SO4H3SO4+HSO4-3.4(10oC)33.0HFH2F+HF2-~12(0oC)19.5H2OH3O+OH-14100CH3COOHCH3COOH2+CH3COO-14.45118.2CH3OHCH3OH2+CH3O-18.964.7NH3NH4+NH2-27-33.4CH3CNCH3CNH+CH2CN-28.681ThepKionistheautodissociationconstantforthepuresolvent,indicatingthat,amongtheseacids,H2SO4dissociatesmuchmorereadilythananyoftheothers,andthatCH3CNisleastlikelytoautodissociate.Theboilingpointsaregiventoprovideanestimateoftheconditionsunderwhicheachsolventmightbeused.AproticSolventsNonpolar:C6H6,CO2,CCl4,etc.Polar:BrF3,IF5,N2O4,SO2,C5H5N,(CH3)2SO,OPCl3,CH3(OCH2CH2)2OCH3,COCl2,
SOCl2,etc.N2O4?NO++NO3-2SO2?SO2++SO32-
SOCl2?SOCl++Cl-
5.LewisdefinitionIn1923,G.N.Lewisproposedadefinitionofacid-basebehaviorintermsofelectron-pairdonationandacceptance.TheLewisdefinitionisperhapsthemostwidelyusedofallbecauseofitssimplicityandwideapplicability,especiallyinthefieldoforganicreactions.Lewisdefinedabaseasanelectron-pairdonorandanacidasanelectron-pairacceptor.Inadditiontoallofthereactionsdiscussedabove,theLewisdefinitionincludesreactionsinwhichnoionsareformedandnohydroniumionsorotherionsaretransferred:BaseAcid
R3N+BF3
→R3N-BF
4CO+Ni→Ni(CO)4
2L+SnCl4→SnCl4L2
2NH3+Ag+
→Ag(NH3)2+CpGaI+Cp2CaII→CpGa-CaCp26.UsanovichdefinitionThecompletedefinitionisasfollows:Anacidisanychemicalspecieswhichreactswithbase,givesupcations,oracceptsanionsorelectrons,orcombineswithanionsand,conversely,abaseisanychemicalspecieswhichreactswithacids,giveupanionsorelectrons,orcombineswithcations.ThisdefinitionsimplyincludesallLewisacid-basereactionsplusredoxreactionswhichmayconsistofcompletetransferofoneormoreelectrons.OH-+O=C=O→HOCO2-
e-(sol)+Na(sol)→Na-(sol)
BaseAcidThesedefinitionscanbesummarizedasageneraldefinition,whichdefinesanacidasdonatingapositivespeciesoracceptinganegativespeciesandabaseasdonatinganegativespeciesoracceptingapositivespecies.
AcidBaseDonorH+,M+O2-,eore2,OH-,X-AcceptorO2-,eore2,OH-,X-H+,M+1.5.2Solventleveling
Becausesolventsmaybeacidsorbases,forexample,weakacidsinwatermayappearstronginabasicsolventandsimilarly,weakbasesinwatermayappearstronginanacidicsolvent.1.Discriminationinwater
AnyacidstrongerthanH3O+inwatergivesaprotontoH2O(water)andformsH3O+.ThismeansthatnoacidisstrongerthanH3O+inwater.Forexample,inwaterwecannotknowwhichisthestrongeracidbetweenHBrandHI.Therefore,waterissaidtohavealevelingeffectthatbringsallstrongeracidsdowntotheacidityofH3O+.However,inanacidicsolventsuchasaceticacid(CH3COOH),bothoftheacidsbehaveasweakacidsandtheirstrengthcanbedistinguished.ItisfoundHIisstrongerthanHBr.Similarly,theOH-isthestrongestbaseinwaterthatanybasestrongerthantheOH-reactswithwat
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國斜面無視差游標卡尺數據監(jiān)測研究報告
- 2025至2030年中國手動旋開冷庫門數據監(jiān)測研究報告
- 2025至2030年中國多功能自動吐卡機數據監(jiān)測研究報告
- 2025至2030年中國冷凍液數據監(jiān)測研究報告
- 2025至2030年中國傳統(tǒng)花生仁數據監(jiān)測研究報告
- 2025至2030年中國中式家具數據監(jiān)測研究報告
- 2025年中國奶茶紙杯市場調查研究報告
- 家長如何協(xié)助培養(yǎng)孩子的社交技能研究報告
- 2025至2031年中國粘尼毛衫行業(yè)投資前景及策略咨詢研究報告
- 2025至2030年中國駕駛員座椅數據監(jiān)測研究報告
- 常用靜脈藥物溶媒的選擇
- 當代西方文學理論知到智慧樹章節(jié)測試課后答案2024年秋武漢科技大學
- GB/T 18488-2024電動汽車用驅動電機系統(tǒng)
- 鋁礬土進口合同中英文
- 最新臺灣藥事法
- 2022年金礦采選項目可行性研究報告
- 氧氣吸入法操作并發(fā)癥預防及處理規(guī)范草稿
- 2022版云南財經大學推免管理辦法
- 門診特定病種待遇認定申請表
- 工傷保險待遇及案例分析PPT課件
- 自控工程識圖
評論
0/150
提交評論