復旦大學無機化學考研5課件_第1頁
復旦大學無機化學考研5課件_第2頁
復旦大學無機化學考研5課件_第3頁
復旦大學無機化學考研5課件_第4頁
復旦大學無機化學考研5課件_第5頁
已閱讀5頁,還剩56頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

4.PeriodicanomaliesofthenonmetalsandposttransitionmetalsReluctanceoffourth-rownonmetalstoexhibitmaximumvalenceThereisadefinitetendencyforthenonmetalsoftheforth-row,As,Se,Br,tobeunstableintheirmaximumoxidationstate.Forexample,AsCl5aswellasAsBr5andAsI5isunknownalthoughbothPCl5andSbCl5exist.TheonlystablearsenicpentahalideisAsF5.

Inoxygengroupthesamephenomenonisencountered.

TheenthalpiesofformationofSF6,SeF6,andTeF6are–1210,-1030,and–1315kJmol-1,respectively.ThisindicatesthatcomparablebondenergiesforS-FandTe-FbondsaremorestablethanSe-Fbond.Thereluctanceofbrominetoaccepta+7oxidationstateiswell-known.Perbromicacid(HBrO4)andperbromateion(BrO4-)hadnotbeensynthesizedbefore1968.Theyareunstable.Thustheperbromateionisastrongeroxidizingagentthaneitherperchlorate(ClO4-)orperiodate(IO4-).(83SeO42-→BrO4-+e-)Indicatingthestabilityof4s2tosomeextent.(2)Theinert-s-paireffectAmongtheheavyposttransitionmetalsthereisadefinitereluctancetoexhibitthehighestpossibleoxidationstateorthegreatestcovalence,whichmeansthattheheavyelementsinCarbongroupusuallyshow+2oxidationstate(divalent,asGe2+,Sn2+,Pb2+)andBoronGroup+1oxidationstate(monovalent).Itispossibletopreparedivalentgermanium,tin,andleadcompounds.IncarbongroupTinhasastable+2oxidationstateinadditionto+4andforleadthe+2oxidationstateisfarmoreimportant.OtherexamplesarestableTl+andBi3+.Thesestableoxidationstates,twolessthanthehighestoxidationstatesoftheelements,haveledtothesuggestionthatthepairofselectronsisinertandonlythepelectronsareemployedinthebonding.Ithasalsobeensuggestedthattheunreactivityofmetallicmercury(Hg)isduetotheinert6s–pairelectrons,becausetheonlybondingelectronsofmercuryare6selectrons,whichresultsintheweakmetalbondandfurthermoretheliquidstateofHg.(3)AnomaliesofGroupsBoronandCarbonCarbongroupinvolvesatendencyforGetoresembleCmorethanSi.Someexamplesare:(i)Reductionofhalideswithzincandhydrochloricacid.GeresemblesCandSnresemblesSi.ZnR3C-X→R3C-HHClZnR3Si-X→NoR3Si-HHClZnR3Ge-X→R3Ge-HHClZnR3Sn-X→NoR3Sn-HHCl(ii)Reactionoforganolithiumcompoundswith(C6H5)3YH(Y=ElementofCarbonGroup).Triphenylmethaneandtriphenylgermanedifferintheirreactionwithorganolithiumcompoundsfromtriphenylsilaneandtriphenylstannane:φ3CH+LiR→LiCφ3+RHφ3SiH+LiR→φ3SiR+LiHφ3GeH+LiR→LiGeφ3+RHφ3SnH+LiR→φ3SnR+LiH(iii)BoronGroupTheelementsofBoronGroupshowsimilarpropertiesalthoughthedifferencesarenotsonoticeableasforCarbonGroup.Itmaybenotedthatthecovalentradiusgallium(Ga)appearstobeclosetothatofaluminum(Al):rGa=120pm,rAl=130pmThefirstionizationenergiesofthesetwoelementsaresurprisinglyclose:I1(Al)=578kJmol-1,I1(Ga)=579kJmol-1(Gaisjustafterthefull3d10,calledScandiumContractionsimilartoLanthanideContraction)InBoronGroup,thesumofthefirstthreeionizationenergiesshowsasimilartendencyasCarbonGroup:IonizationEnergy(kJmol-1) I1+I2+I3 I1+I2+I3+I4

B=6887 C=14282Al=5044 Si=9950Ga=5521Ge=10011In=5084 Sn=8994Tl=5439 Pb=8617(4s2and6s2pairsaremoreinert)(4)Loose-compactModelRelativisticEffectsAccordingtoEinstein’stheoryofrelativity,themassmofaparticleincreasesfromitsrestmassm0whenitsvelocityvapproachesthespeedoflight,c,andmisthengivenbytheequation:

m=m0/[1-(v/c)2]1/2Forahydrogenatom,theBohrmodeloftheatomleadstothevelocityoftheelectronbeingexpressedbytheequation:

v=Ze2/(2ε0h)=2.167×106m/s=1au(atomicunit)Comparewiththespeedoflight:c=2.998×108m/s=137auThemassof1selectronofHatomisclosetom0(m/m0=1.00003).However,foranatomwithatomicnumberZ,thevelocityof1selectronofthisatomreachesapproximatelyZau.e.g.Z=80,Hg,v/c=0.58,leadingtom=1.2m0

SincetheradiusoftheBohrorbitisgivenbytheequation:

r=(n2h2ε0)/(πmZe2)theincreaseinmresultsinanapproximately20%contractionoftheradiusofthe1s(n=1)orbital;thisiscalleddirectrelativisticcontraction.Othersorbitalsareaffectedinasimilarwayandasaconsequence,whenZishigh,sorbitalshavediminishedoverlapwithorbitalsofotheratoms.Adetailedtreatmentshowsthatporbitalsalsoundergoadirectrelativisticcontraction.Ontheotherhand,dorbitalsundergoanindirect

relativisticexpansion;asimilarargumentappliestoforbitals.Withincreasingnucleinumber1s2pairwillbegraduallyattractedtothenuclei.TheshieldingparameterontotheelectronsofthesecondshellwillbehigherthanthatexpectedbySlater’sRules.Thus,theseelectronsarein“l(fā)oose”state.Thentheeffectivenuclearchargeontotheelectronsofthethirdshellincreasesandtheseelectronsarein“compact”state.Thiseffectextendsoutershellsonebyonealternatively.Loose-compacteffect

ForIA,IIAelementsPeriod234567Compact1s21s21s21s21s21s2Loose2s1-22s22p62s22p62s22p62s22p62s22p6Compact3s1-23s23p63s23p63s23p63s23p6LooseΔsmall4s1-24s24p64s24p64s24p6CompactΔbig5s1-25s25p65s25p6LooseΔsmall6s1-26s26P6CompactΔbig7s1-2ΔsmallCsandBaarethemostelectropositiveinIAandIIA,respectively.CsexhibitsthehighestatomicradiumamongtheknownatomsofPeriodicTable.MLiNaKRbCsI1/kJmol-1520496419403376Δ24

77

16

62χ0.980.930.820.820.79Δ

0.05

0.11

0.00

0.03r/pm156186231243265Δ30

45

12

22FortheotherelementsPeriod23456Compact1s21s21s21s21s2Loose2s22p1-62s22p62s22p62s22p62s22p6Compact3s23p1-63s23p63s23p63d103s23p63d10Loose3d104s24p64s24p64d104f14Compact4s24p1-64d105s25p6Loose5s25p1-65d10Compact6s26p1-6Therearetwoadditionaleffectsshouldbeconsidered,fortheneighboringshells:s2andd10

haveverysmallshieldingparameters.Therefore,weshouldconsiderthesumofthesethreeeffects.Forthes-andd-block(innerp6),nochanges.Fortheotherelements:PeriodShellL-Ceffects2ord10effectSum2 2s22p1-6Lweak C C3 3s23p1-6C L L*4 4s24p1-6C C C55s25p1-6L C L6 6s26p1-6Cstrong C C

4s2,6s2,inerts-paireffect*isrelativelyweakerthanthatofPeriod2and4ΔofI1orEA1show“big,small,big,small”trendfromPeriod2to6.Electronicconfigurationofd-block3dVd3s2Crd5s1Mnd5s2Fed6s2Cod7s2Nid8s24dNbd4s1Mod5s1Tcd5s2Rud7s1Rhd8s1Pdd10s05dTad3s2Wd4s2Red5s2Osd6s2Ird7s2Ptd9s14d-blockmetalshavemoreexceptioncomparedwith3dor5d-blockmetals.3dL,4sC;4dC,5sL;5dL,6sC (<d10)Theenergylevelgapbetween4dand5sisbigerwhichfavorsloweringthesumenrergy.ElementCuAgAuPeriod456Configuration3d104s14d105s15d106s1(n-1)d10LCLns1CLCOxidationstate+I,+II+I+I,+IIIAtomicRadium/pm127.8144.4144.2I1/kJmol-1745.5731890I2/kJmol-11957.920741980ThehighestorlowestvaluesofAginthegroupisascribedto“4d10compact,5sloose”→e.g.I1small,I2large1.4ConsiderationBasedonThermodynamicsandKineticsAgoodworkingknowledgeofthermodynamicsisinvaluabletoachemist.Theyareparticularlyinterestedinquantitativeexpressionsforthedrivingforceofchemicalreactions.Thedrivingforcecanbemeasuredintermsofthefreeenergychange(ΔG),theequilibriumconstant(K),thepotentialofthereaction(E),oracombinationofthechangesinheatcontent(ΔH)andentropy(ΔS).Therelationbetweenthesethermodynamicfunctions,anddefinitionsofsomeoftheterms,follow.ΔG=-nEF=-RTIn(K/Q)=ΔH-TΔSHerenisthenumberoffaradaysofelectricityinvolvedinthereaction,andQisthereactionquotient,ortheproductoftheactivitiesoftheresultingsubstancesdividedbytheproductoftheactivitiesofthereactingsubstances,eachactivityraisedtoapowerequaltothecoefficientofthesubstanceinthechemicalequation.aA+bB→cC+dDQ={(fC[C])c(fD[D])d}/{(fA[A])a(fB[B])b}where,a,b,c,anddarecoefficients.Theactivitiesofpuresolidandliquidsubstancesaretakentobeunity.Asafairapproximation,theactivityofagaseoussubstanceisthepartialpressureofthatsubstance,expressedinatmospheres.Forasubstanceinadiluteaqueoussolution,theactivityisroughlyequaltotheconcentration,expressedeitherasmolality(molesperkilogramofwater)ormolarity(molesperliterofsolution).Forconcentratedsolutions,theseapproximationscannotbeused;activitycoefficientdataarerequired.ItwillbenotedthattheequilibriumconstantKisthevalueofQatequilibrium.WhenQ=1(whichisthecasewhenallthereactantsandproductsareatunitactivity),thethermodynamicfunctionspossesstheir"standard"values:ΔG0=-nE0F=-RTInK=ΔH0-TΔS0Weusethermodynamicaldatatoconsidersyntheticproblem.

e.g.Letussupposethatwewishtoprepareperiodate(H3IO62-)byoxidizingiodate(IO3-)withsomeaqueousoxidizingagent.Wecanseethattheperiodate-iodatecouplehasapotentialof1.6Vinacidsolutionsandapotentialof0.7Vinbasicsolutions.H5IO6+H++2e=IO3-+3H2OE0=1.60VH3IO62-+2e=IO3-+3OH-E0=0.70V

Anyoxidizingagentwithareductionpotentialmorepositivethan1.6Vinacidsolutionsormorepositivethan0.7Vinbasicsolutionsisthermodynamicallycapableofoxidizingiodatetoperiodate.Inpractice,hypobromite(BrO-)orhypochlorite(ClO-)isusuallyused,becausetheseoxidizingagentsreactwithreasonablerapidityandarerelativelycheap.Eithermaybeconvenientlypreparedbydissolvingtheappropriatehalogeninanalkalinesolution:Ifweusehypochlorite(ClO-)asoxidizingagent,thereactionis:ClO-+IO3-+OH-+H2O=H3IO62-+Cl-E=0.19VTherefore,periodate(H3IO62-)canbepreparedbyoxidizingiodate(IO3-)withhypochlorite(ClO-)inanalkalinesolution.Whenweworkwiththermodynamicdata,itisalwaysimportanttokeepinmindthatthermodynamicscantelluswhetherareactioniscapableoftakingplace,butitcannottellusthereactionrate.Thus,areactionmaybethermodynamicallyfavored(ΔG<O)andyetproceedextremelyslowly.Therefore,bothkineticsandthermodynamicsmustbeconsidered.AmmoniaSynthesis

TheHaberprocessfortheindustrialsynthesisofammoniaisawell-knownapplicationofbothequilibriumandkineticconsiderationsinsynthesis.Hydrogenandnitrogenreactathightemperaturesandpressuresandinthepresenceofanironcatalystaccordingtothereversiblereaction:N2(g)+3H2(g)=2NH3(g)

TheeffectoftemperatureandpressureontheequilibriumisgivenintheTable.Theformationofammoniaisobviouslyfavoredbybothlowtemperaturesandhighpressures,butifthetemperaturefallsmuchbelow400℃,therateofthecatalyzedreactionistooslowforeconomicalproduction.Ontheotherhand,ifthetemperatureistoohigh,theequilibriumpressureofammoniaistoolowforsatisfactoryyields.Inpractice,pressuresaround1000atmandtemperaturesaround500℃areemployed.DiamondSynthesis

Diamondisthermodynamicallyunstablewithrespecttographiteat1atmpressureatalltemperatures.Fortheprocess,Cgraphite→Cdiamond

ΔG0=692calmole-1at25℃andΔG0=2400calmole-1at1200℃Inasmuchasthemolarvolumesofdiamondandgraphiteare3.42and5.34cm3,respectively,hencethedensitiesofdiamondandgraphiteare3.541and2.266gcm-3.Therefore,thedrivingforcefortheconversionisincreasedbyincreasingthepressure.

AplotofthepressurerequiredtomakeΔG=0againsttemperatureisgivenintheFigure.

Forthereactiontoproceedatanappreciablerate,itisnecessarytogototemperaturesaboveapproximately1800K.Therefore,asshownintheFigure,pressuregreaterthanabout60,000atmisrequiredinthesynthesis.Anotherimportantfeatureistheuseofasolventtopermittakingapartthegraphitelatticeatom-by-atomandbuildingtheatomsintothediamondlattice.Inthefirstsynthesisofadiamond,FeSwasthesolvent;thetemperaturewasabout1920K;thepressurewasabout90,000atm,andthereactiontimewas3min.

Inrecentyears,anumberofinvestigatorshavesucceededingrowingdiamondsatlowpressuresbypyrolyzingthevaporsoforganiccompounds,usingChemicalVaporDeposition(CVD)method.Oneprocessinvolvespassingmethane,atapressurearound0.2mmHg(mercury),overadiamondseedcrystalatabout1050℃.Afterdepositionofcarbonontheseedcrystal,anygraphitethathasformediseliminatedbyreactionwithhydrogenat1033℃and50atm.Therefore,theequilibriumismovedtowardthedirectionofdiamondformation.(NonequilibriumThermodynamics)1.5AcidsandBasesChemicalreactionsincludethreetypesofreactions:RedoxreactionCoordinationreactionDoubledecompositionreaction(containingAcid-basereaction)Onthestandofchemicalbond,achemicalreactioninvolvestheformationand/orcrackofoneormorebonds;Onthestandofenergy,achemicalreactionisaccompaniedwithabsorptionorreleaseofenergy;Onthestandofchargedistribution,chargedensitiesofreactantsandproductswillre-distributealongtheenergy-favoredpath.

Duringredoxreaction,chargestransferamongtheatomsandtheoxidationstatesoftheatomschange;Duringcoordinationreaction,chargestransferamongthecentralatom/ionandligands;Duringdoubledecompositionreaction,chargesredistributeortransferamongthereactantsbuttheoxidationstatesremainunchanged.

Accordingtosomedefinitionsbelow,thesethreetypesofreactionscanbesimplybelongtoacid-basereaction.1.5.1Definitionsofacidsandbases

Therearemanydifferentdefinitionsofacidsandbases.Thefirstrecognitionoftheexistenceoftheclassesofcompoundwenowidentifyasacidsandbaseswerebasedontasteandfeel:acidsweresourandbasesfeltsoapy.Hereweintroducesomemoderndefinitions.1.Br?nsted-LowrydefinitionIn1923,J.N.Br?nstedandT.M.Lowryindependentlysuggestedthatacidsbedefinedasprotondonorsandbasesasprotonacceptors.

AcidBaseH3O+

+OH-

2H2ONH4+

+NH2-

2NH3H3SO4+

+HSO4-

2H2SO4NH4+

+S2-

NH3+HS-Thisdefinitionalsointroducedtheconceptofconjugateacidsandbasesanddescribedthereactionsasoccurringbetweenastrongeracidandbasetoformaweakeracidandbase:H3O++NO2-

→H2O+HNO2acid1base2base1acid2Conjugateacid-basepairs:AcidBase

H3O+H2O

HNO2NO2-

H2OistheconjugatebaseofH3O+andHNO2istheconjugateacidof

NO2-.Thedirectionofthereactionalwaysfavorstheformationofweakeracidsorbasesthanthereactants.H3O+isastrongeracidthanHNO2andNO2-isastrongerbasethanH2O.2.Lux-FlooddefinitionIncontrasttotheBr?nsted-Lowrydefinitionthatemphasizestheprotonastheprincipalspeciesinacid-basereactions,thedefinitionproposedbyLuxandextendedbyFlooddescribesacid-basebehaviorintermsoftheoxideion(O2-).Acidsaredefinedasoxideionacceptorsandbaseasoxideiondonors.Thisconceptcanbeadvancedtotreatnonprotonicsystems,suchasthesystemofmoltenoxide.

AcidBase

SiO2

+CaO

CaSiO3

H2O+CaO

Ca(OH)2

TiO2

+BaCO3

BaTiO3+CO2O2-

3.IonotropicdefinitionAccordingtothisdefinition,theacidisdefinedasacharacteristiccationdonorandthebaseasacharacteristiccationacceptor.Br?nsted-Lowrydefinitionisoneexamplethatdefinesproton(H+)asthecharacteristiccation.Andalso,theacidcanbedefinedasacharacteristicanionacceptorandthebaseasacharacteristicaniondonor.Lux-Flooddefinitionisoneexamplethatdefinesoxideion(O2-)asthecharacteristicanion.4.Solventsystemdefinition

Manysolventsautoionizewiththeformationofacationicandananionicspeciesasdoeswater:2H2O?

H3O++OH-2NH3

?NH4++NH2-2H2SO4?H3SO4++HSO4-2OPCl3

?

OPCl2++OPCl4-2BrF3

?BrF2++BrF4-Forthetreatmentofacid-basereactions,itisconvenienttodefineanacidasaspeciesthatincreasestheconcentrationofthecharacteristiccationofthesolventandabaseasaspeciesthatincreasestheconcentrationofthecharacteristicanion.

e.g.Inwater:HCl(g)+H2O(l)H3O+(aq)+Cl-(aq)

AcidBaseHClincreasestheconcentrationofthecharacteristiccation,[H3O+],inwater,thusHClisanacid.NaOH(g)+xH2O(l)Na(H2O)x+(aq)+OH-(aq)

BaseAcidNaOHisabase.InPOCl3FeCl3(s)+POCl3(l)→POCl2+(sol)+FeCl4-(sol)AcidBaseSOCl2(l)+POCl3(l)

→POCl4-(sol)+SOCl+(sol)BaseAcid(亞硫酰氯)InBrF3SbF5

+BrF3

→BrF2++SbF6-AcidBaseKFinBrF3F-+BrF3→BrF4-

BaseAcidClassifictionofsolvents

ProticSolventsSolventAcidCationBaseAnionpKion(25oC)B.P.(oC)H2SO4H3SO4+HSO4-3.4(10oC)33.0HFH2F+HF2-~12(0oC)19.5H2OH3O+OH-14100CH3COOHCH3COOH2+CH3COO-14.45118.2CH3OHCH3OH2+CH3O-18.964.7NH3NH4+NH2-27-33.4CH3CNCH3CNH+CH2CN-28.681ThepKionistheautodissociationconstantforthepuresolvent,indicatingthat,amongtheseacids,H2SO4dissociatesmuchmorereadilythananyoftheothers,andthatCH3CNisleastlikelytoautodissociate.Theboilingpointsaregiventoprovideanestimateoftheconditionsunderwhicheachsolventmightbeused.AproticSolventsNonpolar:C6H6,CO2,CCl4,etc.Polar:BrF3,IF5,N2O4,SO2,C5H5N,(CH3)2SO,OPCl3,CH3(OCH2CH2)2OCH3,COCl2,

SOCl2,etc.N2O4?NO++NO3-2SO2?SO2++SO32-

SOCl2?SOCl++Cl-

5.LewisdefinitionIn1923,G.N.Lewisproposedadefinitionofacid-basebehaviorintermsofelectron-pairdonationandacceptance.TheLewisdefinitionisperhapsthemostwidelyusedofallbecauseofitssimplicityandwideapplicability,especiallyinthefieldoforganicreactions.Lewisdefinedabaseasanelectron-pairdonorandanacidasanelectron-pairacceptor.Inadditiontoallofthereactionsdiscussedabove,theLewisdefinitionincludesreactionsinwhichnoionsareformedandnohydroniumionsorotherionsaretransferred:BaseAcid

R3N+BF3

→R3N-BF

4CO+Ni→Ni(CO)4

2L+SnCl4→SnCl4L2

2NH3+Ag+

→Ag(NH3)2+CpGaI+Cp2CaII→CpGa-CaCp26.UsanovichdefinitionThecompletedefinitionisasfollows:Anacidisanychemicalspecieswhichreactswithbase,givesupcations,oracceptsanionsorelectrons,orcombineswithanionsand,conversely,abaseisanychemicalspecieswhichreactswithacids,giveupanionsorelectrons,orcombineswithcations.ThisdefinitionsimplyincludesallLewisacid-basereactionsplusredoxreactionswhichmayconsistofcompletetransferofoneormoreelectrons.OH-+O=C=O→HOCO2-

e-(sol)+Na(sol)→Na-(sol)

BaseAcidThesedefinitionscanbesummarizedasageneraldefinition,whichdefinesanacidasdonatingapositivespeciesoracceptinganegativespeciesandabaseasdonatinganegativespeciesoracceptingapositivespecies.

AcidBaseDonorH+,M+O2-,eore2,OH-,X-AcceptorO2-,eore2,OH-,X-H+,M+1.5.2Solventleveling

Becausesolventsmaybeacidsorbases,forexample,weakacidsinwatermayappearstronginabasicsolventandsimilarly,weakbasesinwatermayappearstronginanacidicsolvent.1.Discriminationinwater

AnyacidstrongerthanH3O+inwatergivesaprotontoH2O(water)andformsH3O+.ThismeansthatnoacidisstrongerthanH3O+inwater.Forexample,inwaterwecannotknowwhichisthestrongeracidbetweenHBrandHI.Therefore,waterissaidtohavealevelingeffectthatbringsallstrongeracidsdowntotheacidityofH3O+.However,inanacidicsolventsuchasaceticacid(CH3COOH),bothoftheacidsbehaveasweakacidsandtheirstrengthcanbedistinguished.ItisfoundHIisstrongerthanHBr.Similarly,theOH-isthestrongestbaseinwaterthatanybasestrongerthantheOH-reactswithwat

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論