Chaotic-Dynamics-TAU混沌動力學(xué)的頭-課件_第1頁
Chaotic-Dynamics-TAU混沌動力學(xué)的頭-課件_第2頁
Chaotic-Dynamics-TAU混沌動力學(xué)的頭-課件_第3頁
Chaotic-Dynamics-TAU混沌動力學(xué)的頭-課件_第4頁
Chaotic-Dynamics-TAU混沌動力學(xué)的頭-課件_第5頁
已閱讀5頁,還剩49頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

Chaosvs.RandomnessDonotconfusechaoticwithrandom:Random:irreproducibleandunpredictableChaotic:deterministic-sameinitialconditionsleadtosamefinalstate…butthefinalstateisverydifferentforsmallchangestoinitialconditions

difficultorimpossibletomakelong-termpredictionsClockwork(Newton)vs.Chaotic(Poincaré)UniverseSupposetheUniverseismadeofparticlesofmatterinteractingaccordingtoNewtonlaws

→thisisjustadynamicalsystemgovernedbya(verylargethough)setofdifferentialequationsGiventhestartingpositionsandvelocitiesofallparticles,thereisauniqueoutcome→P.Laplace’s

ClockworkUniverse(XVIIICentury)!CanChaosbeExploited?BriefChaoticHistory:PoincaréBriefChaoticHistory:LorenzChaosintheBraveNewWorldofComputersPoincarécreatedanoriginalmethodtounderstandsuchsystems,anddiscoveredaverycomplicateddynamics,but:

"ItissocomplicatedthatIcannotevendrawthefigure."

AnExample…APendulumstartingat1,1.001,and1.000001rad:ChangingtheDrivingForcef=1,1.07,1.15,1.35,1.45ChaosinPhysicsChaosisseeninmanyphysicalsystems:Fluiddynamics(weatherpatterns),somechemicalreactions,Lasers,Particleaccelerators,…Conditionsnecessaryforchaos:systemhas3independentdynamicalvariablestheequationsofmotionarenon-linearWhyNonlinearityand3DPhaseSpace?DynamicalSystemsAdynamicalsystemisdefinedasadeterministicmathematicalprescriptionforevolvingthestateofasystemforwardintimeExample:AsystemofNfirst-order,autonomousODEDampedDrivenPendulum:PartIThissystemdemonstratesfeaturesofchaoticmotion:Convertequationtoadimensionlessform:)cos(

sin

22fwqqq+=++tAmgdtdcdtdmlD)cos(

sin0tfdtdqdtdDwqqw=++DampedDrivenPendulum:PartII3dynamicvariables:

,,tthenon-linearterm:sinthissystemischaoticonlyforcertainvaluesofq,f0,andwDIntheseexamples:

wD=2/3,q=1/2,andf0near1DampedDrivenPendulum:PartIIItowatchtheonsetofchaos(asf0isincreased)welookatthemotionofthesysteminphasespace,oncetransientsdieawayPaycloseattentiontotheperioddoublingthatprecedestheonsetofchaos...07.10=f15.10=ff0=1.35f0=1.48f0=1.45f0=1.49f0=1.47f0=1.50ForgetAboutSolvingEquations!NewLanguageforChaos:Attractors(DissipativeChaos)KAMtorus(HamiltonianChaos)PoincaresectionsLyapunovexponentsandKolmogoroventropyFourierspectrumandautocorrelationfunctionsPoincaréSectionPoincaréSection:ExamplesPoincaréSection:PendulumThePoincarésectionisasliceofthe3Dphasespaceatafixedvalueof:Dtmod2Thisisanalogoustoviewingthephasespacedevelopmentwithastrobelightinphasewiththedrivingforce.Periodicmotionresultsinasinglepoint,perioddoublingresultsintwopoints...PoincaréMovieTovisualizethe3Dsurfacethatthechaoticpendulumfollows,amoviecanbemadeinwhicheachframeconsistsofaPoincarésectionatadifferentphase...PoincareMap:Continuoustimeevolutionisreplacebyadiscretemapf0=1.07f0=1.48f0=1.50f0=1.15q=0.25AttractorsThesurfacesinphasespacealongwhichthependulumfollows(aftertransientmotiondecays)arecalledattractorsExamples:foradampedundrivenpendulum,attractorisjustapointat=0.(0Din2Dphasespace)foranundampedpendulum,attractorisacurve(1Dattractor)StrangeAttractorsChaoticattractorsofdissipativesystems(strangeattractors)arefractals

OurPendulum:2<dim<3Thefinestructureisquitecomplexandsimilartothegrossstructure:self-similarity.non-integerdimensionWhatisDimension?Capacitydimensionofalineandsquare:1L2L/24L/48L/82nL/2nN1L4L/216L/422nL/2nN)/1log(

/)(log

0lim)/1()(eeeeeNdLNcdd?==TrivialExample:Point,Line,Surface,…Non-TrivialExample:CantorSetTheCantorsetisproducedasfollows:N1121/341/981/2713log

/2log3log

/2log

lim<==cnncdd¥?nLyapunovExponents:PartIThefractionaldimensionofachaoticattractorisaresultoftheextremesensitivitytoinitialconditions.Lyapunovexponentsareameasureoftheaveragerateofdivergenceofneighbouringtrajectoriesonanattractor.LyapunovExponents:PartIIConsiderasmallsphereinphasespace…afterashorttimethespherewillevolveintoanellipsoid:e2te1tLyapunovExponents:PartIIITheaveragerateofexpansionalongtheprincipleaxesaretheLyapunovexponentsChaosimpliesthatatleastoneis>0Forthependulum:i=-

q(dampcoeff.)nocontractionorexpansionalongtdirectionsothatexponentiszerocanbeshownthatthedimensionoftheattractoris:d=2-1/2DissipativevsHamiltonianChaosAttractor:

Anattractorisasetofstates(pointsinthephasespace),invariantunderthedynamics,towardswhichneighboringstatesinagivenbasinofattractionasymptoticallyapproachinthecourseofdynamicevolution.Anattractorisdefinedasthesmallestunitwhichcannotbeitselfdecomposedintotwoormoreattractorswithdistinctbasinsofattraction.Thisrestrictionisnecessarysinceadynamicalsystemmayhavemultipleattractors,eachwithitsownbasinofattraction.

Conservativesystemsdonothaveattractors,sincethemotionisperiodic.Fordissipativedynamicalsystems,however,volumesshrinkexponentiallysoattractorshave0volumeinn-dimensionalphasespace.StrangeAttractors:

Boundedregionsofphasespace(correspondingtopositiveLyapunovcharacteristicexponents)havingzeromeasureintheembeddingphasespaceandafractaldimension.TrajectorieswithinastrangeattractorappeartoskiparoundrandomlyDissipativevsConservativeChaos:LyapunovExponentPropertiesForHamiltoniansystems,theLyapunovexponentsexistinadditiveinversepairs,whileoneofthemisalways0.Indissipativesystemsinanarbitraryn-dimensionalphasespace,theremustalwaysbeoneLyapunovexponentequalto0,sinceaperturbationalongthepathresultsinnodivergence.LogisticMap:PartIThelogisticmapdescribesasimplersystemthatexhibitssimilarchaoticbehaviorCanbeusedtomodelpopulationgrowth:Forsomevaluesof,xtendstoafixedpoint,forothervalues,xoscillatesbetweentwopoints(perioddoubling)andforothervalues,xbecomeschaotic….)1(

11---=nnnxxxmLogisticMap:PartIITodemonstrate…)1(

11---=nnnxxxmxn-1xnBifurcationDiagrams:PartIBifurcation:achangeinthenumberofsolutionstoadifferentialequationwhenaparameterisvariedToobservebifurcatons,plotlongtermvaluesof,atafixedvalueofDtmod2asafunctionoftheforcetermf0BifurcationDiagrams:PartIIIfperiodicsinglevaluePeriodicwithtwosolutions(leftorrightmoving)2valuesPerioddoublingdoublethenumberTheonsetofchaosisoftenseenasaresultofsuccessiveperioddoublings...BifurcationoftheLogisticMapBifurcationofPendulumFeigenbaumNumberTheratioofspacingsbetweenconsecutivevaluesofatthebifurcationsapproachesauniversalconstant,theFeigenbaumnumber.Thisisuniversaltoalldifferentialequations(withincertainlimits)andappliestothependulum.Byusingthefirstfewbifurcationpoints,onecanpredicttheonsetofchaos.¥?==--+-kkkkk...669201.4lim11dmmmmChaosinPHYS306/638Aperiodicmotionconfinedtostrangeattractorsinth

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論