版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Chaosvs.RandomnessDonotconfusechaoticwithrandom:Random:irreproducibleandunpredictableChaotic:deterministic-sameinitialconditionsleadtosamefinalstate…butthefinalstateisverydifferentforsmallchangestoinitialconditions
difficultorimpossibletomakelong-termpredictionsClockwork(Newton)vs.Chaotic(Poincaré)UniverseSupposetheUniverseismadeofparticlesofmatterinteractingaccordingtoNewtonlaws
→thisisjustadynamicalsystemgovernedbya(verylargethough)setofdifferentialequationsGiventhestartingpositionsandvelocitiesofallparticles,thereisauniqueoutcome→P.Laplace’s
ClockworkUniverse(XVIIICentury)!CanChaosbeExploited?BriefChaoticHistory:PoincaréBriefChaoticHistory:LorenzChaosintheBraveNewWorldofComputersPoincarécreatedanoriginalmethodtounderstandsuchsystems,anddiscoveredaverycomplicateddynamics,but:
"ItissocomplicatedthatIcannotevendrawthefigure."
AnExample…APendulumstartingat1,1.001,and1.000001rad:ChangingtheDrivingForcef=1,1.07,1.15,1.35,1.45ChaosinPhysicsChaosisseeninmanyphysicalsystems:Fluiddynamics(weatherpatterns),somechemicalreactions,Lasers,Particleaccelerators,…Conditionsnecessaryforchaos:systemhas3independentdynamicalvariablestheequationsofmotionarenon-linearWhyNonlinearityand3DPhaseSpace?DynamicalSystemsAdynamicalsystemisdefinedasadeterministicmathematicalprescriptionforevolvingthestateofasystemforwardintimeExample:AsystemofNfirst-order,autonomousODEDampedDrivenPendulum:PartIThissystemdemonstratesfeaturesofchaoticmotion:Convertequationtoadimensionlessform:)cos(
sin
22fwqqq+=++tAmgdtdcdtdmlD)cos(
sin0tfdtdqdtdDwqqw=++DampedDrivenPendulum:PartII3dynamicvariables:
,,tthenon-linearterm:sinthissystemischaoticonlyforcertainvaluesofq,f0,andwDIntheseexamples:
wD=2/3,q=1/2,andf0near1DampedDrivenPendulum:PartIIItowatchtheonsetofchaos(asf0isincreased)welookatthemotionofthesysteminphasespace,oncetransientsdieawayPaycloseattentiontotheperioddoublingthatprecedestheonsetofchaos...07.10=f15.10=ff0=1.35f0=1.48f0=1.45f0=1.49f0=1.47f0=1.50ForgetAboutSolvingEquations!NewLanguageforChaos:Attractors(DissipativeChaos)KAMtorus(HamiltonianChaos)PoincaresectionsLyapunovexponentsandKolmogoroventropyFourierspectrumandautocorrelationfunctionsPoincaréSectionPoincaréSection:ExamplesPoincaréSection:PendulumThePoincarésectionisasliceofthe3Dphasespaceatafixedvalueof:Dtmod2Thisisanalogoustoviewingthephasespacedevelopmentwithastrobelightinphasewiththedrivingforce.Periodicmotionresultsinasinglepoint,perioddoublingresultsintwopoints...PoincaréMovieTovisualizethe3Dsurfacethatthechaoticpendulumfollows,amoviecanbemadeinwhicheachframeconsistsofaPoincarésectionatadifferentphase...PoincareMap:Continuoustimeevolutionisreplacebyadiscretemapf0=1.07f0=1.48f0=1.50f0=1.15q=0.25AttractorsThesurfacesinphasespacealongwhichthependulumfollows(aftertransientmotiondecays)arecalledattractorsExamples:foradampedundrivenpendulum,attractorisjustapointat=0.(0Din2Dphasespace)foranundampedpendulum,attractorisacurve(1Dattractor)StrangeAttractorsChaoticattractorsofdissipativesystems(strangeattractors)arefractals
OurPendulum:2<dim<3Thefinestructureisquitecomplexandsimilartothegrossstructure:self-similarity.non-integerdimensionWhatisDimension?Capacitydimensionofalineandsquare:1L2L/24L/48L/82nL/2nN1L4L/216L/422nL/2nN)/1log(
/)(log
0lim)/1()(eeeeeNdLNcdd?==TrivialExample:Point,Line,Surface,…Non-TrivialExample:CantorSetTheCantorsetisproducedasfollows:N1121/341/981/2713log
/2log3log
/2log
lim<==cnncdd¥?nLyapunovExponents:PartIThefractionaldimensionofachaoticattractorisaresultoftheextremesensitivitytoinitialconditions.Lyapunovexponentsareameasureoftheaveragerateofdivergenceofneighbouringtrajectoriesonanattractor.LyapunovExponents:PartIIConsiderasmallsphereinphasespace…afterashorttimethespherewillevolveintoanellipsoid:e2te1tLyapunovExponents:PartIIITheaveragerateofexpansionalongtheprincipleaxesaretheLyapunovexponentsChaosimpliesthatatleastoneis>0Forthependulum:i=-
q(dampcoeff.)nocontractionorexpansionalongtdirectionsothatexponentiszerocanbeshownthatthedimensionoftheattractoris:d=2-1/2DissipativevsHamiltonianChaosAttractor:
Anattractorisasetofstates(pointsinthephasespace),invariantunderthedynamics,towardswhichneighboringstatesinagivenbasinofattractionasymptoticallyapproachinthecourseofdynamicevolution.Anattractorisdefinedasthesmallestunitwhichcannotbeitselfdecomposedintotwoormoreattractorswithdistinctbasinsofattraction.Thisrestrictionisnecessarysinceadynamicalsystemmayhavemultipleattractors,eachwithitsownbasinofattraction.
Conservativesystemsdonothaveattractors,sincethemotionisperiodic.Fordissipativedynamicalsystems,however,volumesshrinkexponentiallysoattractorshave0volumeinn-dimensionalphasespace.StrangeAttractors:
Boundedregionsofphasespace(correspondingtopositiveLyapunovcharacteristicexponents)havingzeromeasureintheembeddingphasespaceandafractaldimension.TrajectorieswithinastrangeattractorappeartoskiparoundrandomlyDissipativevsConservativeChaos:LyapunovExponentPropertiesForHamiltoniansystems,theLyapunovexponentsexistinadditiveinversepairs,whileoneofthemisalways0.Indissipativesystemsinanarbitraryn-dimensionalphasespace,theremustalwaysbeoneLyapunovexponentequalto0,sinceaperturbationalongthepathresultsinnodivergence.LogisticMap:PartIThelogisticmapdescribesasimplersystemthatexhibitssimilarchaoticbehaviorCanbeusedtomodelpopulationgrowth:Forsomevaluesof,xtendstoafixedpoint,forothervalues,xoscillatesbetweentwopoints(perioddoubling)andforothervalues,xbecomeschaotic….)1(
11---=nnnxxxmLogisticMap:PartIITodemonstrate…)1(
11---=nnnxxxmxn-1xnBifurcationDiagrams:PartIBifurcation:achangeinthenumberofsolutionstoadifferentialequationwhenaparameterisvariedToobservebifurcatons,plotlongtermvaluesof,atafixedvalueofDtmod2asafunctionoftheforcetermf0BifurcationDiagrams:PartIIIfperiodicsinglevaluePeriodicwithtwosolutions(leftorrightmoving)2valuesPerioddoublingdoublethenumberTheonsetofchaosisoftenseenasaresultofsuccessiveperioddoublings...BifurcationoftheLogisticMapBifurcationofPendulumFeigenbaumNumberTheratioofspacingsbetweenconsecutivevaluesofatthebifurcationsapproachesauniversalconstant,theFeigenbaumnumber.Thisisuniversaltoalldifferentialequations(withincertainlimits)andappliestothependulum.Byusingthefirstfewbifurcationpoints,onecanpredicttheonsetofchaos.¥?==--+-kkkkk...669201.4lim11dmmmmChaosinPHYS306/638Aperiodicmotionconfinedtostrangeattractorsinth
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院培訓(xùn)心得體會
- 會計金融求職介紹
- 登高作業(yè)培訓(xùn)
- 陜西省榆林市高新區(qū)2024-2025學(xué)年上學(xué)期九年級期中考試英語試卷(含筆試答案無聽力音頻)
- 2024-2025學(xué)年江蘇省無錫市江陰市河塘中學(xué)九年級(上)10月階級段性練習(xí)數(shù)學(xué)試卷(含答案)
- 全球液流電池集流板市場規(guī)模預(yù)測及發(fā)展方向研究報告2024-2030年
- T-ZFDSA 14-2024 天麻魚頭湯制作標(biāo)準(zhǔn)
- Windows Server網(wǎng)絡(luò)管理項目教程(Windows Server 2022)(微課版)課件項目3 DHCP服務(wù)器的配置與管理
- Windows Server網(wǎng)絡(luò)管理項目教程(Windows Server 2022)(微課版)8.2 任務(wù)1 RDS服務(wù)器的安裝
- 甘肅省蘭州市2018年中考語文真題試卷(含答案)
- 2024年界面設(shè)計13875自考復(fù)習(xí)題庫(含答案)
- 航拍中國新疆篇知識點
- 海爾智家股份有限公司財務(wù)報表分析
- 1糖尿病伴酮癥酸中毒護(hù)理查房
- 五金零售行業(yè)財務(wù)管理與成本控制
- 小區(qū)大門改進(jìn)方案
- 2024年廣東湛江農(nóng)墾集團(tuán)公司招聘筆試參考題庫含答案解析
- 醫(yī)院建設(shè)目標(biāo)及規(guī)劃
- 女性生殖內(nèi)分泌疾病診療規(guī)范
- 麻醉藥品和精神藥品管理培訓(xùn)
- 2024年中考?xì)v史九年級上冊重點知識點復(fù)習(xí)提綱(部編版)
評論
0/150
提交評論