版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
§2.3.2平面向量的正交分解及坐標(biāo)表示把一個向量分解為兩個互相垂直的向量,叫作把向量正交分解§2.3.2平面向量的正交分解及坐標(biāo)表示把一個向量分解為思考:如圖,在直角坐標(biāo)系中,已知A(1,0),B(0,1),C(3,4),D(5,7).設(shè),填空:(1)(2)若用來表示,則:1153547(3)向量能否由表示出來?可以的話,如何表示?思考:如圖,在直角坐標(biāo)系中,(1)(2)若用來平面向量的坐標(biāo)表示如圖,是分別與x軸、y軸方向相同的單位向量,若以為基底,則這里,我們把(x,y)叫做向量的(直角)坐標(biāo),記作①其中,x叫做在x軸上的坐標(biāo),y叫做在y軸上的坐標(biāo),①式叫做向量的坐標(biāo)表示。平面向量的坐標(biāo)表示如圖,是分別與x軸、y軸方向相OxyAOxyA例1.如圖,分別用基底,表示向量、、、,并求出它們的坐標(biāo)。AA1A2解:如圖可知同理例1.如圖,分別用基底,表示向量、、思考:已知,你能得出的坐標(biāo)嗎?平面向量的坐標(biāo)運算:兩個向量和(差)的坐標(biāo)分別等于這兩個向量相應(yīng)坐標(biāo)的和(差)實數(shù)與向量的積的坐標(biāo)等于用這個實數(shù)乘原來向量的坐標(biāo)思考:已知例3.已知,求的坐標(biāo)。例3.已知例2.如圖,已知,求的坐標(biāo)。xyOBA解:一個向量的坐標(biāo)等于表示此向量的有向線段的終點的坐標(biāo)減去起點的坐標(biāo)。例2.如圖,已知平面向量的坐標(biāo)表示課件例4.如圖,已知的三個頂點A、B、C的坐標(biāo)分別是(-2,1)、(-1,3)、(3,4),試求頂點D的坐標(biāo)。ABCDxyO解法1:設(shè)點D的坐標(biāo)為(x,y)解得x=2,y=2所以頂點D的坐標(biāo)為(2,2)例4.如圖,已知的三個頂點例4.如圖,已知的三個頂點A、B、C的坐標(biāo)分別是(-2,1)、(-1,3)、(3,4),試求頂點D的坐標(biāo)。ABCDxyO解法2:由平行四邊形法則可得而所以頂點D的坐標(biāo)為(2,2)例4.如圖,已知的三個頂點思考1:如果向量a,b共線(其中b≠0),那么a,b滿足什么關(guān)系?思考2:設(shè)a=(x1,y1),b=(x2,y2),若向量a,b共線(其中b≠0),則這兩個向量的坐標(biāo)應(yīng)滿足什么關(guān)系?反之成立嗎?a=λb.向量a,b(b≠0)共線
思考1:如果向量a,b共線(其中b≠0),那么a,b滿足什么例3已知向量a=(4,2),b=(6,y),且a∥b,求y的值.y=3
例4已知點A(-1,-1),B(1,3),C(2,5),試判斷A、B、C三點是否共線?例3已知向量a=(4,2),b=(6,y),且a∥b思考4:已知點P1(x1,y1),P2(x2,y2),若點P分別是線段P1P2的中點、三等分點,如何用向量方法求點P的坐標(biāo)?xyOP2P1PPP思考4:已知點P1(x1,y1),P2(x2,y2),若點P思考5:一般地,若點P1(x1,y1),P2(x2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 帶你認(rèn)識什么是結(jié)構(gòu)化面試
- 化學(xué)反應(yīng)工程試卷
- 2024美容院美容院與養(yǎng)生館合作經(jīng)營協(xié)議范本3篇
- 2024年度現(xiàn)代農(nóng)業(yè)技術(shù)研發(fā)人員聘用合同模板3篇
- 2025年度酒店廚師團隊承包與客房服務(wù)一體化合同3篇
- 2025年度校園食堂食品安全培訓(xùn)及供餐服務(wù)協(xié)議3篇
- 馬鞍山師范高等??茖W(xué)?!豆夥O(shè)備概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 四川工商學(xué)院《英語聽說Ⅰ》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州電子信息職業(yè)技術(shù)學(xué)院《微生物學(xué)實驗C》2023-2024學(xué)年第一學(xué)期期末試卷
- 天津財經(jīng)大學(xué)《橋牌與博弈論》2023-2024學(xué)年第一學(xué)期期末試卷
- 面條購銷合同2024年
- 因式分解(提取公因式法)練習(xí)200題及答案
- 風(fēng)力發(fā)電收購協(xié)議書
- 水質(zhì)監(jiān)測服務(wù)水質(zhì)自動監(jiān)測系統(tǒng)運行維護方案
- 2024年度-指南美術(shù)課件農(nóng)民畫
- 住宅小區(qū)公共部分裝修施工組織設(shè)計完整
- 重慶市豐都縣2023-2024學(xué)年七年級上學(xué)期期末數(shù)學(xué)試題
- 四年級數(shù)學(xué)思維訓(xùn)練題100道
- DB43-T 2897-2023 竹纖維復(fù)合波紋管材技術(shù)規(guī)范
- 人情往來(禮金)賬目表
- 2023年安全總監(jiān)年終工作總結(jié)
評論
0/150
提交評論