matlab課件-第3章-控制系統(tǒng)的數(shù)學(xué)模型及其轉(zhuǎn)換_第1頁(yè)
matlab課件-第3章-控制系統(tǒng)的數(shù)學(xué)模型及其轉(zhuǎn)換_第2頁(yè)
matlab課件-第3章-控制系統(tǒng)的數(shù)學(xué)模型及其轉(zhuǎn)換_第3頁(yè)
matlab課件-第3章-控制系統(tǒng)的數(shù)學(xué)模型及其轉(zhuǎn)換_第4頁(yè)
matlab課件-第3章-控制系統(tǒng)的數(shù)學(xué)模型及其轉(zhuǎn)換_第5頁(yè)
已閱讀5頁(yè),還剩92頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第三章

控制系統(tǒng)的數(shù)學(xué)模型及其轉(zhuǎn)換7/28/20231第三章

控制系統(tǒng)的數(shù)學(xué)模型及其轉(zhuǎn)換7/27/20231本章內(nèi)容利用MATLAB描述在控制系統(tǒng)中常見(jiàn)的幾種數(shù)學(xué)模型;利用MATLAB實(shí)現(xiàn)任意數(shù)學(xué)模型之間的相互轉(zhuǎn)換;利用MATLAB求解系統(tǒng)經(jīng)過(guò)串聯(lián)、并聯(lián)和反饋連接后的系統(tǒng)模型;利用MATLAB獲取一些典型系統(tǒng)的模型;利用MATLAB實(shí)現(xiàn)連續(xù)系統(tǒng)的離散化和離散系統(tǒng)的連續(xù)化;利用MATLAB求取系統(tǒng)的特性函數(shù)。7/28/20232本章內(nèi)容利用MATLAB描述在控制系統(tǒng)中常見(jiàn)的幾種數(shù)學(xué)模型控制系統(tǒng)計(jì)算機(jī)仿真是建立在控制系統(tǒng)數(shù)學(xué)模型基礎(chǔ)之上的一門技術(shù)。對(duì)系統(tǒng)進(jìn)行仿真,首先應(yīng)該知道系統(tǒng)的數(shù)學(xué)模型,然后才可以在此基礎(chǔ)上設(shè)計(jì)一個(gè)合適的控制器,使得原系統(tǒng)的響應(yīng)達(dá)到預(yù)期的效果。在線性系統(tǒng)理論中,一般常用的數(shù)學(xué)模型形式有:傳遞函數(shù)模型(系統(tǒng)的外部模型)狀態(tài)方程模型(系統(tǒng)的內(nèi)部模型)零極點(diǎn)增益模型(傳遞函數(shù)模型的一種)這些模型之間都有著內(nèi)在的聯(lián)系,可以相互進(jìn)行轉(zhuǎn)換。7/28/20233控制系統(tǒng)計(jì)算機(jī)仿真是建立在控制系統(tǒng)數(shù)學(xué)模型基礎(chǔ)之上的一門技術(shù)系統(tǒng)類型一.連續(xù)和離散系統(tǒng)根據(jù)系統(tǒng)自變量(時(shí)間)是連續(xù)變化還是離散變化,系統(tǒng)分為連續(xù)系統(tǒng)和離散系統(tǒng)。(1)連續(xù)系統(tǒng)——系統(tǒng)輸入、輸出信號(hào)都是連續(xù)時(shí)間信號(hào)。(2)離散系統(tǒng)——系統(tǒng)輸入、輸出信號(hào)都是離散時(shí)間信號(hào)。(3)混合系統(tǒng)——系統(tǒng)輸入、輸出信號(hào)包含連續(xù)信號(hào)和離散信號(hào)。連續(xù)時(shí)間的數(shù)學(xué)模型用微分方程描述。離散時(shí)間系統(tǒng)的數(shù)學(xué)模型用差分方程描述。例如:一般L、R、C電路都是連續(xù)時(shí)間系統(tǒng)。數(shù)字計(jì)算機(jī)是典型的離散時(shí)間系統(tǒng)。實(shí)際上離散時(shí)間系統(tǒng)經(jīng)常與連續(xù)時(shí)間系統(tǒng)組合運(yùn)用,此時(shí)稱為混合系統(tǒng)(或采樣系統(tǒng))。如自動(dòng)控制系統(tǒng)和數(shù)字通信系統(tǒng)。7/28/20234系統(tǒng)類型一.連續(xù)和離散系統(tǒng)根據(jù)系統(tǒng)自變量(時(shí)間)是連續(xù)變化還二.線性和非線性系統(tǒng)

根據(jù)輸入輸出關(guān)系是否同時(shí)滿足齊次性和疊加性,系統(tǒng)分為線性和非線性。假設(shè)系統(tǒng)在沒(méi)有外界信號(hào)作用之前處于靜止?fàn)顟B(tài),在輸入信號(hào)為任意實(shí)數(shù),和或和作用下,有式中,為輸入輸出之間函數(shù)關(guān)系。那么,該系統(tǒng)稱為線性系統(tǒng),否則是非線性系統(tǒng)。根據(jù)模型參數(shù)是否隨時(shí)間變化,線性系統(tǒng)又可細(xì)分為線性定常系統(tǒng)和線性時(shí)變系統(tǒng)。參數(shù)不隨時(shí)間變化的系統(tǒng),稱為時(shí)不變系統(tǒng)或定常系統(tǒng),否則稱為時(shí)變系統(tǒng)。例如,線性定常系統(tǒng):7/28/20235二.線性和非線性系統(tǒng)根據(jù)輸入輸出關(guān)系是否同時(shí)滿足齊線性時(shí)變系統(tǒng):非線性定常系統(tǒng):式中,分別為系統(tǒng)輸入、輸出。7/28/20236線性時(shí)變系統(tǒng):非線性定常系統(tǒng):式中,分別為系統(tǒng)輸入、輸出。7三.確定和隨機(jī)系統(tǒng)

根據(jù)系統(tǒng)輸入、輸出和內(nèi)部狀態(tài)呈現(xiàn)的規(guī)律,系統(tǒng)分為確定性系統(tǒng)與隨機(jī)性系統(tǒng)。輸入輸出之間函數(shù)關(guān)系能夠用確定性模型描述的系統(tǒng),稱為確定性系統(tǒng),否則稱為隨機(jī)系統(tǒng)(或不確定性系統(tǒng))。在控制系統(tǒng)中,隨機(jī)因素可能作用在系統(tǒng)的入口,也可能作用在系統(tǒng)的出口,還可能影響系統(tǒng)模型本身。例如噪聲輸入的隨機(jī)控制系統(tǒng),其微分方程具有如下形式。式中,分別為狀態(tài)變量和輸出變量,為輸入噪聲,通常是正態(tài)分布的白噪聲。7/28/20237三.確定和隨機(jī)系統(tǒng)根據(jù)系統(tǒng)輸入、輸出和內(nèi)部狀態(tài)呈控制系統(tǒng)常用數(shù)學(xué)模型

根據(jù)系統(tǒng)輸入、輸出與內(nèi)部狀態(tài)變量之間關(guān)系,控制系統(tǒng)模型可分為外部模型和內(nèi)部模型。一般地,把建立系統(tǒng)輸入輸出關(guān)系的數(shù)學(xué)模型稱為外部模型,包括時(shí)域模型和頻域模型。把建立系統(tǒng)輸入、輸出與內(nèi)部狀態(tài)變量之間關(guān)系的數(shù)學(xué)模型稱為內(nèi)部模型,相應(yīng)的數(shù)學(xué)模型稱為系統(tǒng)的狀態(tài)空間方程(連續(xù)狀態(tài)空間方程或離散狀態(tài)空間方程)??刂葡到y(tǒng)模型分類7/28/20238控制系統(tǒng)常用數(shù)學(xué)模型根據(jù)系統(tǒng)輸入、輸出與內(nèi)部狀態(tài)變量一.連續(xù)系統(tǒng)

1.微分方程一個(gè)連續(xù)系統(tǒng)可以表示成高階微分方程,即式中,分別為系統(tǒng)輸入量、輸出量,n為系統(tǒng)的階次,為系統(tǒng)的結(jié)構(gòu)參數(shù),結(jié)構(gòu)參數(shù),為輸入函數(shù)的及各階導(dǎo)數(shù)的初始值為它們均為實(shí)常數(shù)。已知輸出變量控制系統(tǒng)常用數(shù)學(xué)模型

7/28/20239一.連續(xù)系統(tǒng)1.微分方程式中,分別為系統(tǒng)輸入量、輸出量 稍加整理,并記 2.傳遞函數(shù)若系統(tǒng)的初始條件為零,即系統(tǒng)在t=0時(shí)已處于一個(gè)穩(wěn)定狀態(tài),那么對(duì)式(3.1)兩邊取拉普拉斯變換后可得稱為系統(tǒng)的傳遞函數(shù)。7/28/202310 稍加整理,并記 2.傳遞函數(shù)稱為系統(tǒng)的傳遞函數(shù)。7/273.狀態(tài)空間描述

微分方程和傳遞函數(shù)都只描述了系統(tǒng)輸入與輸出之間的關(guān)系,而沒(méi)有考慮系統(tǒng)內(nèi)部狀態(tài)的動(dòng)態(tài)運(yùn)動(dòng),僅僅實(shí)現(xiàn)系統(tǒng)輸入與輸出之間的關(guān)系是不夠的,還必須復(fù)現(xiàn)模型的內(nèi)部變量即狀態(tài)變量的動(dòng)態(tài)變化規(guī)律。狀態(tài)空間描述考慮了“輸入-狀態(tài)-輸出”這一過(guò)程,引進(jìn)經(jīng)典控制理論所忽略的中間內(nèi)部狀態(tài),因此狀態(tài)空間表達(dá)式能夠完全反映系統(tǒng)的全部獨(dú)立變量的變化,而且能夠方便處理初始條件。7/28/2023113.狀態(tài)空間描述7/27/202311在用狀態(tài)空間法分析系統(tǒng)時(shí),系統(tǒng)的動(dòng)態(tài)特性是用由狀態(tài)變量構(gòu)成的一階微分方程組來(lái)描述。狀態(tài)空間表達(dá)式包括狀態(tài)方程和輸出方程。線性定常系統(tǒng)的狀態(tài)空間描述為=AX+BU狀態(tài)方程 (3.3)Y=CX+DU輸出方程 (3.4)——維系統(tǒng)矩陣式中——維輸入矩陣——維輸出矩陣——維直接傳遞矩陣7/28/202312在用狀態(tài)空間法分析系統(tǒng)時(shí),系統(tǒng)的動(dòng)態(tài)特性是用由狀態(tài)

——r維輸入向量,

——n維狀態(tài)向量,——m維輸出向量

7/28/202313——r維輸入向量,——n維狀態(tài)向量,——m維

對(duì)于線性時(shí)變系統(tǒng),系數(shù)矩陣A,B,C,D,均與時(shí)間t有關(guān),狀態(tài)空間描述為系統(tǒng)的狀態(tài)空間分析法是時(shí)域內(nèi)的一種矩陣運(yùn)算方法,不再只局限于輸入量、輸出量、誤差量,為提高系統(tǒng)性能提供了有力工具。狀態(tài)空間分析法特別適合于用計(jì)算機(jī)來(lái)計(jì)算,有利于把工程技術(shù)人員從煩瑣的計(jì)算中解脫出來(lái)。7/28/202314對(duì)于線性時(shí)變系統(tǒng),系數(shù)矩陣A,B,C,

二.離散系統(tǒng)1.差分方程設(shè)系統(tǒng)差分方程為(3.6)引進(jìn)后移算子為

(3.7)控制系統(tǒng)常用數(shù)學(xué)模型

假設(shè)系統(tǒng)輸入、輸出及其內(nèi)部狀態(tài)變量均是時(shí)間序列,其中T

為離散時(shí)間間隔,為書寫簡(jiǎn)便,用數(shù)學(xué)模型有3種形式。表示。與連續(xù)時(shí)間系統(tǒng)類似,離散時(shí)間系統(tǒng)7/28/202315二.離散系統(tǒng)1.差分方程(3.6)引進(jìn)后移式(3.6)可寫為(3.8)令則(3.9)7/28/202316式(3.6)可寫為(3.8)令則(3.9)7/27/2022.離散傳遞函數(shù)(Z傳函)假設(shè)系統(tǒng)的初始條件為零,即則得(3.10)系統(tǒng)傳遞函數(shù)為

(3.11)在初始條件為零時(shí),與等價(jià)。7/28/2023172.離散傳遞函數(shù)(Z傳函)則得(3.10)系統(tǒng)傳遞函數(shù)為

3.離散狀態(tài)空間模型類似在連續(xù)系統(tǒng)中,從微分方程或傳遞函數(shù)建立狀態(tài)空間表達(dá)式,叫做系統(tǒng)的實(shí)現(xiàn)。在離散系統(tǒng)中,從差分方程或脈沖傳遞函數(shù)求取離散狀態(tài)空間表達(dá)式,也是一種實(shí)現(xiàn)。多變量離散狀態(tài)空間表達(dá)式(3.12)7/28/2023183.離散狀態(tài)空間模型(3.12)7/27/3.1控制系統(tǒng)的數(shù)學(xué)模型MATLAB的控制系統(tǒng)工具箱是提供自動(dòng)控制系統(tǒng)建模、分析和設(shè)計(jì)方面函數(shù)的集合,提供傳遞函數(shù)模型、零極點(diǎn)增益模型、狀態(tài)空間模型三種形式線性時(shí)不變(LTI)模型。有關(guān)模型表示的函數(shù)如表3-1所示。函數(shù)功能sys=tf(num,den)生成傳遞函數(shù)模型sys=zpk(z,p,k)生成零極點(diǎn)增益模型sys=ss(a,b,c,d)生成狀態(tài)空間模型7/28/2023193.1控制系統(tǒng)的數(shù)學(xué)模型MATLAB的控制系統(tǒng)工3.1.1傳遞函數(shù)num=[b1,b2,…,bm,bm+1]den=[a1,a2,…,an,an+1]注意:它們都是按s的降冪進(jìn)行排列的。7/28/2023203.1.1傳遞函數(shù)7/27/202320MATLAB輸入語(yǔ)句7/28/202321MATLAB輸入語(yǔ)句7/27/202321

MATLABControl工具箱中,用命令tf()可以建立一個(gè)傳遞函數(shù)模型,或?qū)⒘銟O點(diǎn)增益模型和狀態(tài)空間模型變化為傳遞函數(shù)模型。tf()函數(shù)調(diào)用格式如下:sys=tf(num,den);%用于生成連續(xù)傳遞函數(shù)(S傳遞函數(shù));sys=tf(num,den,Ts);%用于生成離散傳遞函數(shù)(Z傳遞函數(shù));sys=tf(num,den,‘Property1’,Value1,...,‘PropertyN’,ValueN);%用于生成具有LTI模型屬性的傳遞函數(shù);sys=tf(num,den,Ts,‘Property1’,Value1,...,‘PropertyN’,ValueN);%用于生成具有LTI模型屬性的傳遞函數(shù);sys=tf('s');%用于生成拉普拉斯變量s有理傳遞函數(shù);sys=tf('z',Ts);%用于生成采樣周期為Ts的z有理傳遞函數(shù);傳遞函數(shù)模型命令tf()調(diào)用格式7/28/202322MATLABControl工具箱中,傳遞函數(shù)輸入舉例【例3.1】

輸入傳遞函數(shù)模型MATLAB輸入語(yǔ)句>>num=[612610];den=[12311];>>sys1=tf(num,den)Transferfunction:6s^3+12s^2+6s+10---------------------------s^4+2s^3+3s^2+s+17/28/202323傳遞函數(shù)輸入舉例【例3.1】輸入傳遞函數(shù)模型MATLAB輸當(dāng)傳遞函數(shù)的分子或分母由若干個(gè)多項(xiàng)式乘積表示時(shí),它可由MATLAB提供的多項(xiàng)式乘法運(yùn)算函數(shù)conv()來(lái)處理,以便獲得分子和分母多項(xiàng)式向量,此函數(shù)的調(diào)用格式為

c=conv(a,b)其中a和b分別為由兩個(gè)多項(xiàng)式系數(shù)構(gòu)成的向量,而c為a和b多項(xiàng)式的乘積多項(xiàng)式系數(shù)向量。conv()函數(shù)的調(diào)用是允許多級(jí)嵌套的。7/28/202324當(dāng)傳遞函數(shù)的分子或分母由若干個(gè)多項(xiàng)式乘積表示時(shí),它可【例3-2】若給定系統(tǒng)的傳遞函數(shù)為【解】則可以將其用下列MATLAB語(yǔ)句表示

>>num=4*conv([12],[166]);>>den=conv([10],conv([11],conv([11],conv([11],[1325]))));>>G=tf(num,den)

7/28/202325【例3-2】若給定系統(tǒng)的傳遞函數(shù)為7/27/202325【例3-2】更簡(jiǎn)便的輸入法s=tf('s');%用于生成拉普拉斯變量s有理傳遞函數(shù)G=4*(s+2)*(s^2+6*s+6)/(s*(s+1)^3*(s^3+3*s^2+2*s+5))7/28/202326【例3-2】更簡(jiǎn)便的輸入法s=tf('s');%用于生成拉【例3-3】對(duì)于單輸入多輸出系統(tǒng)

【解】

則可將其用下列MATLAB語(yǔ)句表示>>num={[32];[1025]};den=[3521];tf(num,den)Transferfunctionfrominputtooutput...3s+2#1:-----------------------3s^3+5s^2+2s+1

s^3+2s+5#2:-----------------------3s^3+5s^2+2s+17/28/202327【例3-3】對(duì)于單輸入多輸出系統(tǒng)Tr

【例3.4】給定SISO系統(tǒng)輸入為“flow”,輸出為“Temp”,傳遞函數(shù)為使用MATLAB表示該傳遞函數(shù)num=[1.322.5];den=[10.51.21];sys=tf(num,den,'inputdelay',2,'inputName','flow','OutputName','Temp')運(yùn)行結(jié)果:Transferfunctionfrominput"flow"tooutput"Temp":1.3s^2+2s+2.5exp(-2*s)*------------------------------s^3+0.5s^2+1.2s+17/28/202328 【例3.4】給定SISO

【例3.5】給定一個(gè)多輸入-多輸出MIMO系統(tǒng)結(jié)果為:Transferfunctionfrominput1tooutput...1#1:-------s+1

#2:2

Transferfunctionfrominput2tooutput...1#1:-------s+2

s+1#2:-------s+2MATLAB命令:num={11;2[11]};den={[11],[12];1,[12]};sys3=tf(num,den)7/28/202329 【例3.5】給定一個(gè)多輸入-多輸出MIMO系統(tǒng)MA

【例3.6】若一采樣周期為0.2s的離散MIMO傳遞函數(shù)為結(jié)果如下:Transferfunctionfrominput1tooutput...z+1#1:--------------------z^2+2z+11#2:---------2z+1

Transferfunctionfrominput2tooutput...Transferz#1:-----------z^2+22#2:----------z+1Samplingtime:0.2MATLAB命令如下:num={[11],[10];1,2};den={[121],[102];[21],[11]};sys4=tf(num,den,0.2)7/28/202330【例3.6】若一采樣周期為0.2s的離散MI3.1.2零極點(diǎn)增益形式零極點(diǎn)模型實(shí)際上是傳遞函數(shù)模型的另一種表現(xiàn)形式,其原理是分別對(duì)原系統(tǒng)傳遞函數(shù)的分子、分母進(jìn)行分解因式處理,以獲得系統(tǒng)的零點(diǎn)和極點(diǎn)的表示形式。MATLAB輸入語(yǔ)句K為系統(tǒng)增益,zi為零點(diǎn),pj為極點(diǎn)7/28/2023313.1.2零極點(diǎn)增益形式零極點(diǎn)模型實(shí)際上是傳遞

在MATLABControl工具箱中,用命令zpk()可以建立零極點(diǎn)增益模型,或?qū)鬟f函數(shù)模型和狀態(tài)空間模型變化為零極點(diǎn)增益模型。sys=zpk(z,p,k)sys=zpk(z,p,k,Ts)sys=zpk(z,p,k,'Property1',Value1,...,'PropertyN',ValueN)sys=zpk(z,p,k,Ts,'Property1',Value1,...,'PropertyN',ValueN)sys=zpk('s')sys=zpk('z')zpk()函數(shù)調(diào)用方法與tf()一致。零極點(diǎn)增益模型zpk函數(shù)調(diào)用格式7/28/202332在MATLABControl工具

【例3.7】給定一零極點(diǎn)增益模型,使用MATLAB表示該傳遞函數(shù)。MATLAB命令如下:z={[];-0.5};p={0.3;[0.1-j,0.1+j]};k=[1;2];sys=zpk(z,p,k,[])結(jié)果如下:Zero/pole/gainfrominputtooutput...1#1:----------(z-0.3)2(z+0.5)#2:-----------------------(z^2-0.2z+1.01)Samplingtime:unspecified7/28/202333【例3.7】給定一零極點(diǎn)增益模型,使用MATMATLAB工具箱中的函數(shù)poly()和roots()可用來(lái)實(shí)現(xiàn)多項(xiàng)式和零極點(diǎn)間的轉(zhuǎn)換,例如在命令窗口中進(jìn)行如下操作可實(shí)現(xiàn)互相轉(zhuǎn)換。>>P=[1352];>>R=roots(P)

R=-1.2267+1.4677i-1.2267-1.4677i-0.5466>>P1=poly(R)

P1=1.00003.00005.00002.00007/28/202334MATLAB工具箱中的函數(shù)poly()和roots(例:建立下述傳遞函數(shù)模型的matlab表示>>num=[12,24,0,20];den=[24622];sys=tf(num,den)借助多項(xiàng)式乘法函數(shù)conv來(lái)處理:>>num=4*conv([1,2],conv([1,6,6],[1,6,6]));>>den=conv([1,0],conv([1,1],conv([1,1],conv([1,1],[1,3,2,5]))));>>sys=tf(num,den)2)1)7/28/202335例:建立下述傳遞函數(shù)模型的matlab表示>>num=[13)零極點(diǎn)增益模型:4)零極點(diǎn)增益模型:z=[];p=[-1,-2,-3-4j,-3+4j];k=5;sys=zpk(z,p,k)z=[-3,0];p=[-1,50,-10];k=1;sys=zpk(z,p,k)7/28/2023363)零極點(diǎn)增益模型:4)零極點(diǎn)增益模型:z=[];z=[-33.1.3部分分式形式傳遞函數(shù)表示成部分分式或留數(shù)形式為極點(diǎn),為各極點(diǎn)對(duì)應(yīng)的留數(shù),為分子除以分母的余子式。7/28/2023373.1.3部分分式形式傳遞函數(shù)表示成部分分式或留數(shù)形式2.1.4狀態(tài)空間表達(dá)式

狀態(tài)空間模型(state-spacemodel:SS)線性定常狀態(tài)空間模型描述為式中,為狀態(tài)向量,為輸入向量,是輸出向量。7/28/2023382.1.4狀態(tài)空間表達(dá)式狀態(tài)空間模型(st在MATLABControl工具箱中,用命令ss()可以建立狀態(tài)空間模型,或?qū)鬟f函數(shù)模型和零極點(diǎn)增益模型轉(zhuǎn)化為狀態(tài)空間模型。語(yǔ)法調(diào)用格式:sys=ss(a,b,c,d)sys=ss(a,b,c,d,Ts)sys=ss(a,b,c,d,'Property1',Value1,...,'PropertyN',ValueN)sys=ss(a,b,c,d,Ts,'Property1',Value1,...,'PropertyN',ValueN)a,b,c,d是狀態(tài)空間模型系數(shù)矩陣。sys為狀態(tài)空間模型對(duì)象。ss函數(shù)的調(diào)用方法與tf()、zpk()一致。7/28/202339在MATLABControl工具箱中,用命令ss【例3.8】設(shè)系統(tǒng)的狀態(tài)空間表達(dá)式為>>A=[001;-3/2-2-1/2;-30-4];>>B=[11;-1-1;-1-3];>>C=[100;010];>>D=zeros(2,2);>>sys=ss(A,B,C,D)7/28/202340【例3.8】設(shè)系統(tǒng)的狀態(tài)空間表達(dá)式為>>A=[001

【例3.9】狀態(tài)空間模型結(jié)果為:a=x1x2x3x1010x2001x3-5-20-1b=u1x10x20x31c=x1x2x3y1100d=u1y10Continuous-timemodel。用MATLAB表示為A=[010;001;-5-20-1];B=[0;0;1];C=[100];D=0;sys=ss(A,B,C,D)7/28/202341【例3.9】狀態(tài)空間模型用MATLAB表示為

傳遞函數(shù)模型、零極點(diǎn)增益模型和狀態(tài)空間模型之間模型轉(zhuǎn)換函數(shù)如圖所示。3.2系統(tǒng)數(shù)學(xué)模型間的相互轉(zhuǎn)換7/28/202342傳遞函數(shù)模型、零極點(diǎn)增益模型和狀態(tài)空間

在不同的場(chǎng)合需要不同的模型,因此系統(tǒng)的數(shù)學(xué)模型有多種表示方式,這些數(shù)學(xué)模型需要相互轉(zhuǎn)換。MATLABcontrol工具箱提供了一系列用于模型轉(zhuǎn)換的函數(shù)如表3-2所示。函數(shù)功能sys=tf(ss_sys);sys=tf(zpk_sys);ss或zpk模型轉(zhuǎn)換傳遞函數(shù)模型sys=zpk(ss_sys);sys=zpk(tf_sys)ss或tf模型生成零極點(diǎn)增益模型sys=ss(tf_sys);sys=ss(zpk_sys)tf或zpk模型生成狀態(tài)空間模型[A,B,C,D]=tf2ss(num,den)傳遞函數(shù)轉(zhuǎn)換成狀態(tài)空間模型[num,den]=ss2tf(A,B,C,D,iu)狀態(tài)空間模型轉(zhuǎn)換成傳遞函數(shù)[z,p,k]=tf2zp(num,den)傳遞函數(shù)轉(zhuǎn)換成零極點(diǎn)增益模型[num,den]=zp2tf(z,p,k)零極點(diǎn)增益模型轉(zhuǎn)換成傳遞函數(shù)[z,p,k]=ss2zp(A,B,C,D,iu)狀態(tài)空間模型轉(zhuǎn)換成零極點(diǎn)增益模型[A,B,C,D]=zp2ss(z,p,k)零極點(diǎn)增益模型轉(zhuǎn)換成狀態(tài)空間模型7/28/202343在不同的場(chǎng)合需要不同的模型,因此系統(tǒng)的

MATLAB實(shí)現(xiàn)模型轉(zhuǎn)換有兩種不同的方式。方式1:簡(jiǎn)單的模型轉(zhuǎn)換首先生成任一指定的模型對(duì)象(tf,ss,zpk),然后將該模型對(duì)象類作為輸入,調(diào)用欲轉(zhuǎn)換的模型函數(shù)即可。例如:欲將傳遞函數(shù)轉(zhuǎn)換為狀態(tài)空間模型sys=tf(num,den); %生成傳遞函數(shù)模型。[a,b,c,d]=ss(sys); %將傳遞函數(shù)模型作為狀態(tài)空間模型的輸入。7/28/202344MATLAB實(shí)現(xiàn)模型轉(zhuǎn)換有兩種不同的方式。7/方式2:直接調(diào)用模型轉(zhuǎn)換函數(shù)連續(xù)模型之間三種形式的數(shù)學(xué)模型相互轉(zhuǎn)換函數(shù)類型包括tf2ss、ss2tf、zp2tf、tf2zp、ss2zp、zp2ss,共六個(gè)函數(shù),如圖3.2所示。函數(shù)的調(diào)用格式和功能見(jiàn)表3-2。傳遞函數(shù)模型、零極點(diǎn)增益模型和狀態(tài)空間模型之間模型轉(zhuǎn)換函數(shù)如圖3.2所示。7/28/202345方式2:直接調(diào)用模型轉(zhuǎn)換函數(shù)7/27/202345

3.2.1狀態(tài)空間表達(dá)式到傳遞函數(shù)的轉(zhuǎn)換

在MATLAB控制系統(tǒng)工具箱中,給出一個(gè)根據(jù)狀態(tài)空間表達(dá)式求取系統(tǒng)傳遞函數(shù)的函數(shù)ss2tf(),其調(diào)用格式為[num,den]=ss2tf(A,B,C,D,iu)對(duì)多輸入的系統(tǒng),必須具體化iu。例如,如果系統(tǒng)有三個(gè)輸入(u1,u2,u3),則iu必須為1、2或3中的一個(gè),其中1表示u1,2表示u2,3表示u3。如果系統(tǒng)只有一個(gè)輸入,則可采用[num,den]=ss2tf(A,B,C,D)或[num,den]=ss2tf(A,B,C,D,1)7/28/2023463.2.1狀態(tài)空間表達(dá)式到傳遞函數(shù)的轉(zhuǎn)換*【例3-10】對(duì)于例3-8中給出的多變量系統(tǒng),可以由下面的命令分別對(duì)各個(gè)輸入信號(hào)求取傳遞函數(shù)向量,然后求出這個(gè)傳遞函數(shù)陣。

【解】利用下列MATLAB語(yǔ)句>>[num1,den1]=ss2tf(A,B,C,D,1)num1=01.00005.00006.00000-1.0000-5.0000-6.0000den1=161167/28/202347*【例3-10】對(duì)于例3-8中給出的多變量系統(tǒng),可以由下面的>>[num2,den2]=ss2tf(A,B,C,D,2)num2=01.00003.00002.00000-1.0000-4.0000-3.0000den2=16116則可得系統(tǒng)的傳遞函數(shù)陣7/28/202348>>[num2,den2]=ss2tf(A,B,C,D,2)3.2.2狀態(tài)空間形式到零極點(diǎn)形式的轉(zhuǎn)換MATLAB函數(shù)ss2zp()的調(diào)用格式為

[Z,P,K]=ss2zp(A,B,C,D,iu)iu值的設(shè)置與ss2tf()用法相同。7/28/2023493.2.2狀態(tài)空間形式到零極點(diǎn)形式的轉(zhuǎn)換MATLAB函數(shù)

【例3-11】將狀態(tài)空間模型轉(zhuǎn)換為傳遞函數(shù)和零極點(diǎn)增益模型。MATLAB命令:A=[010;001;-5-20-1];B=[0;0;1];C=[100];D=0;[num,den]=ss2tf(A,B,C,D); %狀態(tài)空間模型轉(zhuǎn)換成傳遞函數(shù)模型printsys(num,den) %輸出傳遞函數(shù)模型[z,p,k]=ss2zp(A,B,C,D); %狀態(tài)空間模型轉(zhuǎn)換成零極點(diǎn)增益模型zpk(z,p,k) %生成零極點(diǎn)增益模型對(duì)象類7/28/202350【例3-11】將狀態(tài)空間模型轉(zhuǎn)換為傳遞函數(shù)和

【例3-13】多入單出系統(tǒng)狀態(tài)空間表達(dá)式包括兩個(gè)傳遞函數(shù):Y1(s)/U1(s)、Y1(s)/U2(s)(當(dāng)考慮輸入u1時(shí),可設(shè)u2為零。反之亦然),試將其化成傳遞函數(shù)形式。MATLAB命令:A=[010;011;-5.00825.1026-5.032471];B=[01;25.042;121.0053];C=[100];D=[00];[num,den]=ss2tf(A,B,C,D,1);sys1=tf(num,den)[num,den]=ss2tf(A,B,C,D,2);sys2=tf(num,den)7/28/202351【例3-13】多入單出系統(tǒng)狀態(tài)空間表達(dá)式包括

傳遞函數(shù)Y1(s)/U1(s)為Transferfunction:-3.553e-015s^2+25.04s+247----------------------------------------s^3+4.032s^2–30.14s+5.008傳遞函數(shù)Y1(s)/U2(s)為Transferfunction:s^2+6.032s–17.07----------------------------------------s^3+4.032s^2–30.14s+5.008以上就是下列兩個(gè)傳遞函數(shù)的MATLAB表達(dá)式:7/28/202352傳遞函數(shù)Y1(s)/U1(s)為7/27/20

2.2.3傳遞函數(shù)到狀態(tài)空間表達(dá)式的轉(zhuǎn)換如果已知系統(tǒng)的傳遞函數(shù)模型,求取系統(tǒng)狀態(tài)空間表達(dá)式的過(guò)程又稱為系統(tǒng)的實(shí)現(xiàn)。由于狀態(tài)變量可以任意地選取,所以實(shí)現(xiàn)的方法并不是唯一的,這里只介紹一種比較常用的實(shí)現(xiàn)方法。在MATLAB控制系統(tǒng)工具箱中稱這種方法為能控標(biāo)準(zhǔn)型實(shí)現(xiàn)方法,并給出了直接實(shí)現(xiàn)函數(shù),該函數(shù)的調(diào)用格式為

[A,B,C,D]=tf2ss(num,den)7/28/2023532.2.3傳遞函數(shù)到狀態(tài)空間表達(dá)式的轉(zhuǎn)換

【例3-14】將傳遞函數(shù)化成狀態(tài)空間表達(dá)式num=[023;121];den=[10.41];[A,B,C,D]=tf2ss(num,den)結(jié)果為:A=-0.4000-1.00001.00000B=10C=2.00003.00001.60000D=017/28/202354【例3-14】將傳遞函數(shù)化成狀態(tài)空間表達(dá)式73.2.4傳遞函數(shù)形式到零極點(diǎn)形式的轉(zhuǎn)換MATLAB函數(shù)tf2zp()的調(diào)用格式為

[Z,P,K]=tf2zp(num,den)3.2.5零極點(diǎn)形式到狀態(tài)空間表達(dá)式的轉(zhuǎn)換MATLAB函數(shù)zp2ss()的調(diào)用格式為

[A,B,C,D]=zp2ss(Z,P,K)3.2.6零極點(diǎn)形式到傳遞函數(shù)形式的轉(zhuǎn)換MATLAB函數(shù)zp2tf()的調(diào)用格式為

[num,den]=zp2tf(Z,P,K)7/28/2023553.2.4傳遞函數(shù)形式到零極點(diǎn)形式的轉(zhuǎn)換3.2.5零極

【例3-15】將傳遞函數(shù)化為零極點(diǎn)增益模型MATLAB代碼命令如下。num=[21];den=[341];[z,p,k]=tf2zp(num,den)結(jié)果:z=-0.5000p=-1.0000-0.3333k=0.6667因此,零點(diǎn)為-1/2,極點(diǎn)為-1/3和-1,增益為2/3,因此零極點(diǎn)增益模型為7/28/202356【例3-15】將傳遞函數(shù)化為零極點(diǎn)增益模型M

【例3-16】零極點(diǎn)增益模型化成狀態(tài)空間表達(dá)式MATLAB代碼命令如下。z=[-2];p=[-1-3-3];k=2;[A,B,C,D]=zp2ss(z,p,k)7/28/202357【例3-16】零極點(diǎn)增益模型化成狀態(tài)空間表達(dá)3.2.7部分分式與傳遞函數(shù)形式之間的轉(zhuǎn)換[num,den]=residue(P,R,H):部分分式模型轉(zhuǎn)換為傳遞函數(shù)模型[P,R,H]=residue(num,den):傳遞函數(shù)模型轉(zhuǎn)換為部分分式模型7/28/2023583.2.7部分分式與傳遞函數(shù)形式之間的轉(zhuǎn)換[num,

sys=append(sys1,sys2,...,sysN)子系統(tǒng)合成對(duì)角形式sys=

parallel(sys1,sys2,inp1,inp2,out1,out2)并聯(lián)連接sys=series(sys1,sys2,outputs1,inputs2)串聯(lián)連接sys=feedback(sys1,sys2)反饋連接sys=lft(sys1,sys2,nu,ny)模型連接sysc=connect(sys,Q,inputs,outputs)框圖建模3.3系統(tǒng)模型的連接在一般情況下,控制系統(tǒng)常常由若干個(gè)環(huán)節(jié)通過(guò)串聯(lián)、并聯(lián)和反饋連接的方式而組成,對(duì)在各種連接模式下的系統(tǒng)能夠進(jìn)行分析就需要對(duì)系統(tǒng)的模型進(jìn)行適當(dāng)?shù)奶幚?在MATLAB的控制系統(tǒng)工具箱中提供了大量的對(duì)控制系統(tǒng)的簡(jiǎn)單模型進(jìn)行連接的函數(shù)。7/28/202359sys=append(sys1,sys2,

,3.3.1串聯(lián)連接在MATLAB的控制系統(tǒng)工具箱中提供了系統(tǒng)的串聯(lián)連接處理函數(shù)series(),它既可處理由狀態(tài)方程表示的系統(tǒng),也可處理由傳遞函數(shù)陣表示的單輸入多輸出系統(tǒng)。SISO系統(tǒng)模型的串連MIMO系統(tǒng)模型的串連7/28/202360,3.3.1串聯(lián)連接在MATLAB函數(shù)調(diào)用格式:sys=series(sys1,sys2):求SISO系統(tǒng)sys1和sys2的串連模型sys=series(sys1,sys2,outputs1,inputs2):求MIMO系統(tǒng)的串連,其中outputs1為sys1的輸出端口數(shù),inputs2為sys2的輸入端口數(shù)。若MIMO系統(tǒng)有多個(gè)連接,在outputs1和inputs2為同維數(shù)向量。[a,b,c,d]=series(a1,b1,c1,d1,a2,b2,c2,d2)[a,b,c,d]=series(a1,b1,c1,d1,a2,b2,c2,d2,output1,input2)[num,den]=series(num1,den1,num2,den2)[num,den]=series(num1,den1,num2,den2,output1,input2)7/28/202361函數(shù)調(diào)用格式:[a,b,c,d]=series(a1,b1,

【例3-17】求下列兩系統(tǒng)串聯(lián)后的系統(tǒng)模型>>A1=[23;-14];B1=[1;0];C1=[24];D1=1;>>A2=[03;-3-1];B2=[0;1];C2=[13];D2=2;>>[A,B,C,D]=series(A1,B1,C1,D1,A2,B2,C2,D2)7/28/202362【例3-17】求下列兩系統(tǒng)串聯(lián)后的系統(tǒng)模型>>對(duì)于單入單出SISO系統(tǒng),并聯(lián)連接是指各子系統(tǒng)輸入相同,輸出是各子系統(tǒng)輸出之代數(shù)和。如圖所示。3.3.2并聯(lián)連接在MATLAB的控制系統(tǒng)工具箱中提供了系統(tǒng)的并聯(lián)連接處理函數(shù)parallel()。SISO系統(tǒng)模型的并連MIMO系統(tǒng)模型的并連7/28/202363對(duì)于單入單出SISO系統(tǒng),并聯(lián)連接是指各子系統(tǒng)輸入相[a,b,c,d]=parallel(a1,b1,c1,d1,a2,b2,c2,d2)[a,b,c,d]=parallel(a1,b1,c1,d1,a2,b2,c2,d2,in1,in2,out1,out2)[num,den]=parallel(num1,den1,num2,den2)

其調(diào)用格式如下:sys=parallel(sys1,sys2):兩個(gè)SISO系統(tǒng)模型的并聯(lián)sys=parallel(sys1,sys2,in1,in2,out1,out2):生成兩個(gè)MIMO系統(tǒng)的并聯(lián)模型,并聯(lián)輸入端口由向量in1和in2定義,并聯(lián)的輸出端口由向量out1和out2定義。in1和out1對(duì)應(yīng)sys1用于并聯(lián)的輸入、輸出端口向量,in2和out2對(duì)應(yīng)sys2用于并聯(lián)的輸入、輸出端口向量。7/28/202364[a,b,c,d]=parallel(a1,b1,c1,d1【例3-18】在上圖所示的SISO系統(tǒng)并聯(lián)模型結(jié)構(gòu)中,已知sys1、sys2的傳遞函數(shù)分別為:s=tf('s');%定義拉普拉斯變量ssys1=(s+1)/(s*(s^2+s+2));%定義SISO系統(tǒng)sys1的傳遞函數(shù)模型sys2=5/(5*s+1);%定義SISO系統(tǒng)的sys2的傳遞函數(shù)模型disp('并聯(lián)系統(tǒng)模型為')sys=parallel(sys1,sys2)%生成sys1與sys2的并聯(lián)模型執(zhí)行上述命令后在CommandWindows得如下結(jié)果:并聯(lián)系統(tǒng)模型為Transferfunction:5s^3+10s^2+16s+1----------------------------5s^4+6s^3+11s^2+2s7/28/202365【例3-18】在上圖所示的SISO系統(tǒng)并聯(lián)模型結(jié)構(gòu)中,已知s

【例3-19】求下列兩系統(tǒng)并聯(lián)后的系統(tǒng)模型>>num1=3;den1=[14];num2=[24];den2=[123];>>[num,den]=parallel(num1,den1,num2,den2);>>G=tf(num,den)Transferfunction:5s^2+18s+25-----------------------s^3+6s^2+11s+127/28/202366【例3-19】求下列兩系統(tǒng)并聯(lián)后的系統(tǒng)模型>>系統(tǒng)模型的反饋連接分SISO系統(tǒng)模型反饋連接和MIMO系統(tǒng)模型反饋連接。3.3.3反饋連接SISO系統(tǒng)模型的反饋MIMO系統(tǒng)模型的反饋7/28/202367系統(tǒng)模型的反饋連接分SISO系統(tǒng)模型反饋連接和MIMsys=feedback(sys1,sys2,sign):生SISO系統(tǒng)sys1與sys2構(gòu)成的反饋系統(tǒng)傳遞函數(shù)模型,sys2為反饋通道傳遞函數(shù)模型,反饋類型由sign指定,當(dāng)sign=1為正反饋,當(dāng)sign=-1為負(fù)反饋,此時(shí)sign可省略。sys=feedback(sys1,sys2,feedin,feedout,sign):生成MIMO系統(tǒng)的部分反饋模型,feedin指定sys1中連入反饋回路的輸入端口向量。feedout指定sys1中連入反饋回路中的輸出端口向量。feedback()調(diào)用格式[a,b,c,d]=feedback(a1,b1,c1,d1,a2,b2,c2,d2,sign)[a,b,c,d]=feedback(a1,b1,c1,d1,a2,b2,c2,d2,inp1,out1)[num,den]=feedback(num1,den1,num2,den2,sign)7/28/202368sys=feedback(sys1,sys2,sign):生【例】給定一個(gè)5輸入4輸出的狀態(tài)空間子系統(tǒng)sys1和一個(gè)3輸入2輸出的狀態(tài)空間反饋控制器sys2。sys1的輸出1、3和4連接到控制器sys2的輸入端,控制器sys2的輸出端連接到子系統(tǒng)sys1的輸入端4和2。則采用命令如下:feedin=[42];feedout=[134];cloop=feedback(sys1,sys2,feedin,feedout);7/28/202369【例】給定一個(gè)5輸入4輸出的狀態(tài)空間子系統(tǒng)sys1和一個(gè)3

【例3-20】求下列兩系統(tǒng)反饋連接后的系統(tǒng)模型numg=[251];deng=[123];numh=[510];denh=[110];[num,den]=feedback(numg,deng,numh,denh);printsys(num,den)7/28/202370【例3-20】求下列兩系統(tǒng)反饋連接后的系統(tǒng)模型3.3.4系統(tǒng)的組合MATLAB的組合函數(shù)append()的調(diào)用格式為

[A,B,C,D]=append(A1,B1,C1,D1,A2,B2,C2,D2)7/28/2023713.3.4系統(tǒng)的組合MATLAB的組合函數(shù)appen

3.3.5根據(jù)框圖建模利用connect()函數(shù),可以根據(jù)系統(tǒng)的方框圖按指定方式求取系統(tǒng)模型,其函數(shù)調(diào)用格式為:[A1,B1,C1,D1]=connect(A,B,C,D,Q,inputs,outputs)其中(A,B,C,D)為由函數(shù)append()生成的無(wú)連接對(duì)角方塊系統(tǒng)的狀態(tài)空間模型系數(shù)矩陣;Q矩陣用于指定系統(tǒng)(A,B,C,D)的內(nèi)部連接關(guān)系,Q矩陣的每一行對(duì)應(yīng)于一個(gè)有連接關(guān)系的輸入,其第一個(gè)元素為輸入編號(hào),其后為連接該輸入的輸出編號(hào),如采用負(fù)連接,則以負(fù)值表示;inputs和outputs用于指定系統(tǒng)(A1,B1,C1,D1)的輸入和輸出的編號(hào);(A1,B1,C1,D1)為在指定輸入和輸出并按要求的內(nèi)部連接關(guān)系下所生成的系統(tǒng)。7/28/2023723.3.5根據(jù)框圖建模利用connec

【例3-21】用框圖建模法重做【例3-17】7/28/202373【例3-21】用框圖建模法重做【例3-17】7

【例3-21】用框圖建模法求系統(tǒng)的傳遞函數(shù)。7/28/202374【例3-21】用框圖建模法求系統(tǒng)的傳遞函數(shù)。7

【例3-22】用框圖建模法求系統(tǒng)的傳遞函數(shù)。7/28/202375【例3-22】用框圖建模法求系統(tǒng)的傳遞函數(shù)。7

【例3-23】如圖3-9所示的系統(tǒng)連接關(guān)系,建立該框圖的狀態(tài)空間表達(dá)式和傳遞函數(shù)模型。圖3-9用方框圖表示系統(tǒng)的連接關(guān)系7/28/202376【例3-23】如圖3-9所示的系統(tǒng)連接關(guān)系,Step1:定義子系統(tǒng)數(shù)學(xué)模型(傳遞函數(shù)tf、狀態(tài)空間模型ss或零極點(diǎn)增益模型zpk)。7/28/202377Step1:定義子系統(tǒng)數(shù)學(xué)模型(傳遞函數(shù)tf、狀態(tài)空間模Step2:建立無(wú)連接的狀態(tài)空間模型,形成一個(gè)無(wú)連接關(guān)系的對(duì)角塊(a,b,c,d)。7/28/202378Step2:建立無(wú)連接的狀態(tài)空間模型,形成一個(gè)無(wú)連接關(guān)系的Step3:指定框圖間的連接關(guān)系。7/28/202379Step3:指定框圖間的連接關(guān)系。7/27/202379Step4:選擇輸入/輸出。7/28/202380Step4:選擇輸入/輸出。7/27/202380Step5:調(diào)用connect函數(shù),完成框圖模型的狀態(tài)空間模型。sysc=connect(sys,Q,inputs,outputs);7/28/202381Step5:調(diào)用connect函數(shù),完成框圖模型的狀態(tài)空間Step6:將狀態(tài)空間模型轉(zhuǎn)換成傳遞函數(shù)模型。7/28/202382Step6:將狀態(tài)空間模型轉(zhuǎn)換成傳遞函數(shù)模型。7/27/2

7/28/2023837/27/2023833.4典型系統(tǒng)的生成1.建立二階系統(tǒng)模型可利用MATLAB所提供的函數(shù)ord2()來(lái)建立其調(diào)用格式為

[num,den]=ord2(ωn,ζ)或

[A,B,C,D]=ord2(ωn,ζ)7/

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論