完全平方公式教學(xué)設(shè)計【8篇】_第1頁
完全平方公式教學(xué)設(shè)計【8篇】_第2頁
完全平方公式教學(xué)設(shè)計【8篇】_第3頁
完全平方公式教學(xué)設(shè)計【8篇】_第4頁
完全平方公式教學(xué)設(shè)計【8篇】_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

完全平方公式教學(xué)設(shè)計【8篇】完全平方公式教學(xué)設(shè)計篇1

學(xué)習(xí)了乘法公式中的完全平方,一個是兩數(shù)和的平方,另一個是兩數(shù)差的平方,兩者僅一個“符號”不同。相乘的結(jié)果是兩數(shù)的平方和,加上(或減去)兩數(shù)的積的2倍,兩者也僅差一個“符號”不同,運用完全平方公式計算時,要注意:

(1)切勿把此公式與平方差公式混淆,而隨意寫。

(2)切勿把“乘積項”2ab中的2丟掉。

(3)計算時,要先觀察題目是否符合公式的條件。若不符合,應(yīng)先變形為符合公式的條件的形式,再利用公式進行計算;若不能變?yōu)榉蠗l件的形式,則應(yīng)運用乘法法則進行計算。

今后在教學(xué)中,要注意以下幾點:

1、讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計算題,目的是辨認(rèn)題目的結(jié)構(gòu)特征。

2、引入完全平方公式,讓學(xué)生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力。

完全平方公式教學(xué)設(shè)計篇2

一、教材分析

完全平方公式是初中代數(shù)的一個重要組成部分,是學(xué)生在已經(jīng)掌握單項式乘法、多項式乘法及平方差公式基礎(chǔ)上的拓展,對以后學(xué)習(xí)因式分解、解一元二次方程、配方法、勾股定理及圖形面積計算都有舉足輕重的作用。

本節(jié)課是繼乘法公式的內(nèi)容的一種升華,起著承上啟下的作用。在內(nèi)容上是由多項式乘多項式而得到的,同時又為下一節(jié)課打下了基礎(chǔ),環(huán)環(huán)相扣,層層遞進。通過這節(jié)課的學(xué)習(xí),可以培養(yǎng)學(xué)生探索與歸納能力,體會到從簡單到復(fù)雜,從特殊到一般和轉(zhuǎn)化等重要的思想方法。

二、學(xué)情分析

多數(shù)學(xué)生的抽象思維能力、邏輯思維能力、數(shù)學(xué)化能力有限,理解完全平方公式的幾何解釋、推導(dǎo)過程、結(jié)構(gòu)特點有一定困難。所以教學(xué)中應(yīng)盡可能多地讓學(xué)生動手操作,突出完全平方公式的探索過程,自主探索出完全平方公式的基本形式,并用語言表述其結(jié)構(gòu)特征,進一步發(fā)展學(xué)生的合情推理能力、合作交流能力和數(shù)學(xué)化能力。

三、教學(xué)目標(biāo)

知識與技能

利用添括號法則靈活應(yīng)用乘法公式。

過程與方法

利用去括號法則得到添括號法則,培養(yǎng)學(xué)生的逆向思維能力。

情感態(tài)度與價值觀

鼓勵學(xué)生算法多樣化,培養(yǎng)學(xué)生多方位思考問題的習(xí)慣,提高學(xué)生的合作交流意識和創(chuàng)新精神。

四、教學(xué)重點難點

教學(xué)重點

理解添括號法則,進一步熟悉乘法公式的合理利用.

教學(xué)難點

在多項式與多項式的乘法中適當(dāng)添括號達到應(yīng)用公式的目的.

五、教學(xué)方法

思考分析、歸納總結(jié)、練習(xí)、應(yīng)用拓展等環(huán)節(jié)。

六、教學(xué)過程設(shè)計

師生活動

設(shè)計意圖

一.提出問題,創(chuàng)設(shè)情境

請同學(xué)們完成下列運算并回憶去括號法則.

(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)去括號法則:

去括號時,如果括號前是正號,去掉括號后,括號里的每一項都不改變符合;如果括號前是負(fù)號,去掉括號后,括號里的各項都改變符合.

也就是說,遇“加”不變,遇“減”都變.

二、探究新知

把上述四個等式的左右兩邊反過來,又會得到什么結(jié)果呢?

(1)4+5+2=4+(5+2)(2)4-5-2=4-(5+2)

(3)a+b+c=a+(b+c)(4)a-b+c=a-(b-c)

左邊沒括號,右邊有括號,也就是添了括號,同學(xué)們可不可以總結(jié)出添括號法則來呢?

(學(xué)生分組討論,最后總結(jié))

添括號法則是:

添括號時,如果括號前面是正號,括到括號里的.各項都不變符號;如果括號前面是負(fù)號,括到括號里的各項都改變符號.

也是:遇“加”不變,遇“減”都變.

請同學(xué)們利用添括號法則完成下列練習(xí):

1.在等號右邊的括號內(nèi)填上適當(dāng)?shù)捻棧?/p>

(1)a+b-c=a+()(2)a-b+c=a-()

(3)a-b-c=a-()(4)a+b+c=a-()

判斷下列運算是否正確.

(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)

(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)

總結(jié):添括號法則是去括號法則反過來得到的,無論是添括號,還是去括號,運算前后代數(shù)式的值都保持不變,所以我們可以用去括號法則驗證所添括號后的代數(shù)式是否正確.

三、新知運用

有些整式相乘需要先作適當(dāng)?shù)淖冃危缓笤儆霉?,這就需要同學(xué)們理解乘法公式的結(jié)構(gòu)特征和真正內(nèi)涵.請同學(xué)們分組討論,完成下列計算.

例:運用乘法公式計算

(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2

(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)

四.隨堂練習(xí):

1.課本P111練習(xí)

2.《學(xué)案》101頁——鞏固訓(xùn)練

五、課堂小結(jié):

通過本節(jié)課的學(xué)習(xí),你有何收獲和體會?

我們學(xué)會了去括號法則和添括號法則,利用添括號法則可以將整式變形,從而靈活利用乘法公式進行計算.

我體會到了轉(zhuǎn)化思想的重要作用,學(xué)數(shù)學(xué)其實是不斷地利用轉(zhuǎn)化得到新知識,比如由繁到簡的轉(zhuǎn)化,由難到易的轉(zhuǎn)化,由已知解決未知的轉(zhuǎn)化等等.

六、檢測作業(yè)

習(xí)題:必做題:3、4、5題

選做題:7題

知識梳理,教學(xué)導(dǎo)入,激發(fā)學(xué)生的學(xué)習(xí)熱情

交流合作,探究新知,以問題驅(qū)動,層層深入。

歸納總結(jié),提升課堂效果。

作業(yè)檢測,檢測目標(biāo)的達成情況。

完全平方公式教學(xué)設(shè)計篇3

一、教材分析

本節(jié)內(nèi)容在全書及章節(jié)的地位:《完全平方公式》是人教版數(shù)學(xué)八年級上冊第十四章的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了多項式的乘法,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)課通過學(xué)生合作學(xué)習(xí),利用多項式相乘法則和圖形解釋而得到完全平方公式,進而理解和運用完全平方公式,對以后學(xué)習(xí)因式分解,解一元二次方程都具有舉足輕重的作用。

作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識,因此本節(jié)課在教學(xué)中力圖向?qū)W生滲透換元思想和數(shù)形結(jié)合思想。

二、學(xué)情分析

學(xué)生剛學(xué)過多項式的乘法,已具備學(xué)習(xí)和運用完全平方公式的知識結(jié)構(gòu),但是由于學(xué)生初步學(xué)習(xí)乘法公式,認(rèn)清公式結(jié)構(gòu)并不容易,因此教學(xué)時要循序漸進。

三、教學(xué)目標(biāo)

知識與技能

1.完全平方公式的推導(dǎo)及其應(yīng)用。

2.完全平方公式的幾何證明。

過程與方法

經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力。

情感態(tài)度與價值觀

對學(xué)生觀察能力、概括能力、語言表述能力的培養(yǎng),以及數(shù)學(xué)思想的滲透。

四、教學(xué)重點難點

教學(xué)重點

完全平方公式的`推導(dǎo)過程;結(jié)構(gòu)特點與公式的應(yīng)用。

教學(xué)難點

完全平方公式結(jié)構(gòu)特點及其應(yīng)用。

五、教法學(xué)法

多媒體輔助教學(xué),將知識形象化、生動化,激發(fā)學(xué)生的興趣。教學(xué)中逐步設(shè)置疑問,引導(dǎo)學(xué)生動手、動腦、動口,積極參與知識全過程。

六、教學(xué)過程設(shè)計

師生活動

設(shè)計意圖

一.復(fù)習(xí)多項式與多項式的乘法法則

1、多項式與多項式的乘法法則內(nèi)容。

2、多項式與多項式的乘法練習(xí)。

二.講授新課

完全平方公式的推導(dǎo)

1、利用多項式與多項式的乘法法則和幾何法推導(dǎo)完全平方(和)公式

附:有簡單的填空練習(xí)

2、利用多項式乘法則和換元法推導(dǎo)完全平方(差)公式

(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

二、總結(jié)完全平方公式的特點

介紹助記口訣:首平方,尾平方,首尾兩倍乘積放中央。

三、課堂練習(xí)

1、改錯練習(xí)

2、例題講解(總結(jié)利用完全平方公式計算的步驟)

第一步選擇公式,明確是哪兩項和(或差)的平方;

第二步準(zhǔn)確代入公式;

第三步化簡。

計算練習(xí)

(1)課本110頁第一題

(2)(x-6)2(y-5)2

四、課堂小結(jié):

1、應(yīng)用完全平方公式應(yīng)注意什么?

在解題過程中要準(zhǔn)確確定a和b,對照公式原形的兩邊,做到不丟項、不弄錯符號、2ab時不能少乘以2。

2、助記口訣

復(fù)習(xí)多項式與多項式的乘法法則為新課的學(xué)習(xí)做準(zhǔn)備。

利用不同的的方法來推導(dǎo)完全平方公式,讓學(xué)生認(rèn)知數(shù)學(xué)中的不同解題方法。

利用助記口訣幫助學(xué)生更加準(zhǔn)確的掌握完全平方公式的特點。

通過課堂練習(xí),使學(xué)生掌握用完全平方公式計算的步驟,加強學(xué)生解題的準(zhǔn)確率。

強調(diào)應(yīng)用完全平方公式解題的注意點和助記口訣,提高學(xué)生解決問題的能力和解題的準(zhǔn)確率。

完全平方公式教學(xué)設(shè)計篇4

一、教學(xué)內(nèi)容:

本節(jié)內(nèi)容是人教版教材八年級上冊,第十四章第2節(jié)乘法公式的第二課時――完全平方公式。

二、教材分析:

完全平方公式是乘法公式的重要組成部分,也是乘法運算知識的升華,它是在學(xué)生學(xué)習(xí)整式乘法后,對多項式乘法中出現(xiàn)的一種特殊的算式的總結(jié),體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學(xué)生后續(xù)學(xué)好因式分解、分式運算的必備知識,它還是配方法的基本模式,為以后學(xué)習(xí)一元二次方程、函數(shù)等知識奠定了基礎(chǔ),所以說完全平方公式屬于代數(shù)學(xué)的基礎(chǔ)地位。

本節(jié)課內(nèi)容是在學(xué)生掌握了平方差公式的基礎(chǔ)上,研究完全平方公式的推導(dǎo)和應(yīng)用,公式的發(fā)現(xiàn)與驗證為學(xué)生體驗規(guī)律探索提供了一種較好的模式,培養(yǎng)學(xué)生逐步形成嚴(yán)密的邏輯推理能力。完全平方公式的學(xué)習(xí)對簡化某些代數(shù)式的運算,培養(yǎng)學(xué)生的求簡意識很有幫助。使學(xué)生了解到完全平方公式是有力的數(shù)學(xué)工具。

重點:掌握完全平方公式,會運用公式進行簡單的計算。

難點:理解公式中的字母含義,即對公式中字母a、b的理解與正確應(yīng)用。

三、教學(xué)目標(biāo)

(1)經(jīng)歷探索完全平方公式的推導(dǎo)過程,掌握完全平方公式,并能正確運用公式進行簡單計算。

(2)進一步發(fā)展學(xué)生的符號感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學(xué)會獨立思考。

(3)通過推導(dǎo)完全平方公式及分析結(jié)構(gòu)特征,培養(yǎng)學(xué)生觀察、分析、歸納的能力,學(xué)會與他人合作交流,體驗解決問題的多樣性。

(4)體驗完全平方公式可以簡化運算從而激發(fā)學(xué)生的學(xué)習(xí)興趣;在自主探究、合作交流的學(xué)習(xí)過程中獲得體驗成功的喜悅,增強學(xué)習(xí)數(shù)學(xué)的自信心。

四、學(xué)情分析與教法學(xué)法

學(xué)情分析:課程標(biāo)準(zhǔn)提出數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上,本節(jié)課就是在前面的學(xué)習(xí)中,學(xué)生已經(jīng)掌握了整式的乘法運算及平方差公式的基礎(chǔ)上開展的,具備了初步的總結(jié)歸納能力。另外,14歲的中學(xué)生充滿了好奇心,有較強的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調(diào)動學(xué)生的學(xué)習(xí)熱情,本節(jié)內(nèi)容才較易掌握。但八年級學(xué)生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問題。

學(xué)法:以自主探究為主要學(xué)習(xí)方式,使學(xué)生在獨立思考、歸納總結(jié)、合作交流

總結(jié)反思中獲得數(shù)學(xué)知識與技能。

教法:以啟發(fā)引導(dǎo)式為主要教學(xué)方式,在引導(dǎo)探究、歸納總結(jié)、典例精析、合作交流的教學(xué)過程中,教師做好組織者和引導(dǎo)者,讓學(xué)生在老師的指導(dǎo)下處于主動探究的學(xué)習(xí)狀態(tài)。

五、教學(xué)過程(略)

六、教學(xué)評價

在教學(xué)中,教師在精心設(shè)置教學(xué)環(huán)節(jié)中,做到以學(xué)生為主體,做好組織者和引導(dǎo)者,全面評價學(xué)生在知識技能、數(shù)學(xué)思考、問題解決和情感態(tài)度等方面的表現(xiàn)。教師通過情境引入、提供問題引導(dǎo)學(xué)生從已有的知識為出發(fā)點,自主探究,發(fā)現(xiàn)問題,深入思考。學(xué)生解決問題要以獨立思考為主,當(dāng)遇到困難時學(xué)會求助交流,教師也要給學(xué)生思考交流的時間,讓學(xué)生經(jīng)歷得出結(jié)論的過程,培養(yǎng)發(fā)現(xiàn)問題解決問題的能力。

在整個學(xué)習(xí)過程中,通過對學(xué)生參與自主探究的程度、合作交流的意識以及獨立思考的習(xí)慣,發(fā)現(xiàn)問題的能力進行評價,并對學(xué)生的想法或結(jié)論給予鼓勵評價。

完全平方公式教學(xué)設(shè)計篇5

運用完全平方公式計算:

(1)(2)(3)

(4)(5)(6)

(7)(8)(9)

(l0)

學(xué)生活動:學(xué)生在練習(xí)本上完成,然后同學(xué)互評,教師抽看結(jié)果,練習(xí)中存在的共性問題要集中解決.

5.變式訓(xùn)練,培養(yǎng)能力

完全平方公式教學(xué)設(shè)計篇6

教材分析

1本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式

1、以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過學(xué)生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。

學(xué)情分析

1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:

①同類項的定義。

②合并同類項法則

③多項式乘以多項式法則。

2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

教學(xué)目標(biāo)

(一)教學(xué)目標(biāo):

1、經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。

2、會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算。

(二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認(rèn)識有理

數(shù)、實數(shù)、代數(shù)式、、;掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運用代數(shù)式、、不等式、函數(shù)等進行描述。

(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。

(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。

教學(xué)重點和難點

重點:能運用完全平方公式進行簡單的計算。

難點:會推導(dǎo)完全平方公式

教學(xué)過程

教學(xué)過程設(shè)計如下:

〈一〉、提出問題

[引入]同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎?

(2m+3n)2=,(-2m-3n)2=,

(2m-3n)2=,(-2m+3n)2=。

〈二〉、分析問題

1、[學(xué)生回答]分組交流、討論

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特點。

(2)結(jié)果的項數(shù)特點。

(3)三項系數(shù)的特點(特別是符號的特點)。

(4)三項與原多項式中兩個單項式的關(guān)系。

2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、運用公式,解決問題

1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

(m+n)2=,(m-n)2=,

(-m+n)2=,(-m-n)2=,

(a+3)2=,(-c+5)2=,

(-7-a)2=,()2=.

2、判斷:

()①(a-2b)2=a2-2ab+b2

()②(2m+n)2=2m2+4mn+n2

()③(-n-3m)2=n2-6mn+9m2

()④(5a+)2=25a2+5ab+

()⑤(5a-)2=5a2-5ab+

()⑥(-a-2b)2=(a+2b)2

()⑦(2a-4b)2=(4a-2b)2

()⑧(-5m+n)2=(-n+5m)2

3、一現(xiàn)身手

①(x+y)2=;②(-y-x)2=;

③(2x+3)2=;④(3a-2)2=;

⑤(2x+3y)2=;⑥(4x-5y)2=;

⑦(+n)2=;⑧()2=.

〈四〉、[學(xué)生小結(jié)]

你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?

(1)公式右邊共有3項。

(2)兩個平方項符號永遠為正。

(3)中間項的符號由等號左邊的兩項符號是否相同決定。

(4)中間項是等號左邊兩項乘積的2倍。

〈五〉、探險之旅

(1)(-3a+2b)2=

(2)(-7-2m)2=

(3)(-+2n)2=

(4)(3/5a-1/2b)2=

(5)(mn+3)2=

(6)()2=

(7)(2xy2-3x2y)2=

(8)(2n3-3m3)2=

板書設(shè)計

完全平方公式

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

完全平方公式教學(xué)設(shè)計篇7

教學(xué)目標(biāo)

理解兩個完全平方公式的結(jié)構(gòu),靈活運用完全平方公式進行運算。

在運用完全平方公式的過程中,進一步發(fā)展學(xué)生的符號演算的能力,提高運算能力。

培養(yǎng)學(xué)生在獨立思考的基礎(chǔ)上,積極參與對數(shù)學(xué)問題的討論,敢于發(fā)表自己的見解。

重點難點

重點

完全平方公式的比較和運用

難點

完全平方公式的結(jié)構(gòu)特點和靈活運用。

教學(xué)過程

一、復(fù)習(xí)導(dǎo)入

1.說出完全平方公式的內(nèi)容及作用。

2.計算,除了直接用兩數(shù)差的完全平方公式外,還有別的方法嗎?

學(xué)生思考后回答:由于兩數(shù)差可以轉(zhuǎn)化成兩數(shù)和,所以還可以用兩數(shù)和的完全平方公式計算,把“”看成加數(shù),按照兩數(shù)和的完全平方公式計算,結(jié)果是一樣的。

教師歸納:當(dāng)我們對差與和加以區(qū)分時,兩個公式是有區(qū)別的.,區(qū)別是其結(jié)果的中間項一個是“減”一個是“加”,注意到區(qū)別有助于計算的準(zhǔn)確;另一方面,當(dāng)我們對差與和不加區(qū)分,全部理解成“加項”時,那么兩個公式從結(jié)構(gòu)上來看就是一致的了,其結(jié)構(gòu)都是“兩項和的平方,等于它們的平方和,加上它們的積的兩倍?!弊⒁獾剿鼈兊慕y(tǒng)一性,有于我們更深刻地理解公式特點,提高運算的靈活性。

我們學(xué)習(xí)運算,除了要重視結(jié)果,還要重視過程,平時注意訓(xùn)練運算方法的多樣性,可以加深對算理的理解和運用,提高運算過程的合理性和靈活性,從而真正的提高運算能力。

二、新課講解

溫故知新

與,與相等嗎?為什么?

學(xué)生討論交流,鼓勵學(xué)生從不同的角度進行說理,共同歸納總結(jié)出兩條判斷的思路:

1.對原式進行運算,利用運算的結(jié)果來判斷;

2.不對原式進行運算,只做適當(dāng)變形后利用整體的方法來判斷。

思考:與,與相等嗎?為什么?

利用整體的方法判斷,把看成一個數(shù),則是它的相反數(shù),相反數(shù)的奇次方是相反的,所以它們不相等。

總結(jié)歸納得到:;

三、典例剖析

例1運用完全平方公式計算:

鼓勵學(xué)生用多種方法計算,只要言之成理,只要是自己動腦筋發(fā)現(xiàn)的,都要給予肯定,同時還要引導(dǎo)學(xué)生評價哪種算法最簡潔。

例2計算:

(1);(2).

例3計算:

訓(xùn)練學(xué)生熟練地、靈活地運用完全平方公式進行運算,進一步滲透整體和轉(zhuǎn)化的思想方法。

四、課堂練習(xí)

1.運用完全平方公式計算:

(1);(2);

2.計算:

(1);(2).

3.計算:

學(xué)生解答,教師巡視,注意學(xué)生的計算過程是否合理,組織學(xué)生對錯誤進行分析和點評。

五、小結(jié)

師生共同回顧完全平方公式的結(jié)構(gòu)特點,體會公式的作用,交流計算的經(jīng)驗。教師對課堂上學(xué)生掌握不夠牢固的知識進行辨析、強調(diào)與補充,學(xué)生也可以談一談個人的學(xué)習(xí)感受。

六、布置作業(yè)

P50第2(3)、(4),3題

完全平方公式教學(xué)設(shè)計篇8

教材分析

1本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式

1、以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過學(xué)生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。

學(xué)情分析

1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:

①同類項的定義。

②合并同類項法則

③多項式乘以多項式法則。

2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

教學(xué)目標(biāo)

(一)教學(xué)目標(biāo):

1、經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。

2、會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算。

(二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認(rèn)識有理

數(shù)、實數(shù)、代數(shù)式、、;掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運用代數(shù)式、、不等式、函數(shù)等進行描述。

(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。

(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。

教學(xué)重點和難點

重點:能運用完全平方公式進行簡單的計算。

難點:會推導(dǎo)完全平方公式

教學(xué)過程

教學(xué)過程設(shè)計如下:

〈一〉、提出問題

[引入]同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎?

(2m+3n)2=,(-2m-3n)2=,

(2m-3n)2=,(-2m+3n)2=。

〈二〉、分析問題

1、[學(xué)生回答]分組交流、討論

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特點。

(2)結(jié)果的項數(shù)特點。

(3)三項

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論