2024屆江漢區(qū)部分學(xué)校數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2024屆江漢區(qū)部分學(xué)校數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2024屆江漢區(qū)部分學(xué)校數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2024屆江漢區(qū)部分學(xué)校數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2024屆江漢區(qū)部分學(xué)校數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆江漢區(qū)部分學(xué)校數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.在Rt△ABC中,∠C=900,AC=4,AB=5,則sinB的值是()A. B. C. D.2.在Rt△ABC中,∠C=90°,AB=10,sin∠B=,則BC=()A.15 B.6 C.9 D.83.如圖,AB為⊙O的直徑,四邊形ABCD為⊙O的內(nèi)接四邊形,點P在BA的延長線上,PD與⊙O相切,D為切點,若∠BCD=125°,則∠ADP的大小為()A.25° B.40° C.35° D.30°4.如圖,為線段上一點,與交與點,,交與點,交與點,則下列結(jié)論中錯誤的是()A. B. C. D.5.已知二次函數(shù)(a≠0)的圖象如圖所示,則下列結(jié)論:①b<0,c>0;②a+b+c<0;③方程的兩根之和大于0;④a﹣b+c<0,其中正確的個數(shù)是()A.4個 B.3個 C.2個 D.1個6.小明同學(xué)對數(shù)據(jù)26,36,46,5■,52進(jìn)行統(tǒng)計分析,發(fā)現(xiàn)其中一個兩位數(shù)的個位數(shù)字被墨水涂污看不到了,則分析結(jié)果與被涂污數(shù)字無關(guān)的是()A.平均數(shù) B.方差 C.中位數(shù) D.眾數(shù)7.如圖,已知,且,則()A. B. C. D.8.等腰三角形的一邊長等于4,一邊長等于9,則它的周長是()A.17 B.22 C.17或22 D.139.如圖,PA,PB分別與⊙O相切于A,B兩點,若∠C=65°,則∠P的度數(shù)為()A.65° B.130° C.50° D.100°10.程大位是我國明朝商人,珠算發(fā)明家.他60歲時完成的《直指算法統(tǒng)宗》是東方古代數(shù)學(xué)名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法.對書中某一問題改編如下:意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個正好分完,大和尚共分得()個饅頭A.25 B.72 C.75 D.90二、填空題(每小題3分,共24分)11.如圖,某試驗小組要在長50米,寬39米的矩形試驗田中間開辟一橫一縱兩條等寬的小道,使剩余的面積是1800平方米,求小道的寬.若設(shè)小道的寬為米,則所列出的方程是_______(只列方程,不求解)12.如圖,⊙O的半徑OA長為6,BA與⊙O相切于點A,交半徑OC的延長線于點B,BA長為,AH⊥OC,垂足為H,則圖中陰影部分面積為_____.(結(jié)果保留根號)13.把拋物線沿著軸向左平移3個單位得到的拋物線關(guān)系式是_________.14.邊心距為的正六邊形的半徑為_______.15.方程(x﹣1)2=4的解為_____.16.函數(shù)的自變量的取值范圍是.17.已知,則=____18.扇形的弧長為10πcm,面積為120πcm2,則扇形的半徑為_____cm.三、解答題(共66分)19.(10分)如圖,⊙O是△ABC的外接圓,AB是直徑,OD⊥AC,垂足為D點,直線OD與⊙O相交于E,F(xiàn)兩點,P是⊙O外一點,P在直線OD上,連接PA,PB,PC,且滿足∠PCA=∠ABC(1)求證:PA=PC;(2)求證:PA是⊙O的切線;(3)若BC=8,,求DE的長.20.(6分)為增強(qiáng)中學(xué)生體質(zhì),籃球運球已列為銅陵市體育中考選考項目,某校學(xué)生不僅練習(xí)運球,還練習(xí)了投籃,下表是一名同學(xué)在罰球線上投籃的試驗結(jié)果,根據(jù)表中數(shù)據(jù),回答問題.投籃次數(shù)(n)50100150200250300500投中次數(shù)(m)286078104124153252(1)估計這名同學(xué)投籃一次,投中的概率約是多少?(精確到0.1)(2)根據(jù)此概率,估計這名同學(xué)投籃622次,投中的次數(shù)約是多少?21.(6分)如圖1是超市的手推車,如圖2是其側(cè)面示意圖,已知前后車輪半徑均為5cm,兩個車輪的圓心的連線AB與地面平行,測得支架AC=BC=60cm,AC、CD所在直線與地面的夾角分別為30°、60°,CD=50cm.(1)求扶手前端D到地面的距離;(2)手推車內(nèi)裝有簡易寶寶椅,EF為小坐板,打開后,椅子的支點H到點C的距離為10cm,DF=20cm,EF∥AB,∠EHD=45°,求坐板EF的寬度.(本題答案均保留根號)22.(8分)近年來,無人機(jī)航拍測量的應(yīng)用越來越廣泛.如圖,無人機(jī)從A處觀測得某建筑物頂點O時俯角為30°,繼續(xù)水平前行10米到達(dá)B處,測得俯角為45°,已知無人機(jī)的水平飛行高度為45米,則這棟樓的高度是多少米?(結(jié)果保留根號)23.(8分)在平面直角坐標(biāo)系中,已知拋物線的表達(dá)式為:y=﹣x2+bx+c.(1)根據(jù)表達(dá)式補(bǔ)全表格:拋物線頂點坐標(biāo)與x軸交點坐標(biāo)與y軸交點坐標(biāo)(1,0)(0,-3)(2)在如圖的坐標(biāo)系中畫出拋物線,并根據(jù)圖象直接寫出當(dāng)y隨x增大而減小時,自變量x的取值范圍.24.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點坐標(biāo)為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.(1)求二次函數(shù)y=ax2+bx+c的表達(dá)式;(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點P在AC上方),作PD平行于y軸交AB于點D,問當(dāng)點P在何位置時,四邊形APCD的面積最大?并求出最大面積;(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,且AE為其一邊,求點M、N的坐標(biāo).25.(10分)解方程:(x+3)(x﹣6)=﹣1.26.(10分)東東玩具商店用500元購進(jìn)一批悠悠球,很受中小學(xué)生歡迎,悠悠球很快售完,接著又用900元購進(jìn)第二批這種悠悠球,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進(jìn)價多了5元.(1)求第一批悠悠球每套的進(jìn)價是多少元;(2)如果這兩批悠悠球每套售價相同,且全部售完后總利潤不低于25%,那么每套悠悠球的售價至少是多少元?

參考答案一、選擇題(每小題3分,共30分)1、D【解題分析】試題分析:正弦的定義:正弦由題意得,故選D.考點:銳角三角函數(shù)的定義點評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握正弦的定義,即可完成.2、D【分析】首先根據(jù)正弦函數(shù)的定義求得AC的長,然后利用勾股定理求得BC的長.【題目詳解】解:∴直角△ABC中,故選:D.【題目點撥】本題考查的是銳角三角形的正弦函數(shù),理解熟記正弦三角函數(shù)定義是解決本題的關(guān)鍵.3、C【分析】連接AC,OD,根據(jù)直徑所對的圓周角是直角得到∠ACB是直角,求出∠ACD的度數(shù),根據(jù)圓周角定理求出∠AOD的度數(shù),再利用切線的性質(zhì)即可得到∠ADP的度數(shù).【題目詳解】連接AC,OD.∵AB是直徑,∴∠ACB=90°,∴∠ACD=125°﹣90°=35°,∴∠AOD=2∠ACD=70°.∵OA=OD,∴∠OAD=∠ADO,∴∠ADO=55°.∵PD與⊙O相切,∴OD⊥PD,∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.故選:C.【題目點撥】本題考查了切線的性質(zhì)、圓周角定理及推論,正確作出輔助線是解答本題的關(guān)鍵.4、A【分析】先根據(jù)條件證明△PCF∽△BCP,利用相似三角形的性質(zhì):對應(yīng)角相等,再證明△APD∽△PGD,進(jìn)而證明△APG∽△BFP再證明時注意圖形中隱含的相等的角,故可進(jìn)行判斷.【題目詳解】∵∠CPD=∠B,∠C=∠C,∴△PCF∽△BCP.∵∠CPD=∠A,∠D=∠D,∴△APD∽△PGD.∵∠CPD=∠A=∠B,∠APG=∠B+∠C,∠BFP=∠CPD+∠C∴∠APG=∠BFP,∴△APG∽△BFP.故結(jié)論中錯誤的是A,故選A.【題目點撥】此題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟知相似三角形的判定定理.5、B【解題分析】試題分析:∵拋物線開口向下,∴a<0,∵拋物線對稱軸x>0,且拋物線與y軸交于正半軸,∴b>0,c>0,故①錯誤;由圖象知,當(dāng)x=1時,y<0,即a+b+c<0,故②正確,令方程的兩根為、,由對稱軸x>0,可知>0,即>0,故③正確;由可知拋物線與x軸的左側(cè)交點的橫坐標(biāo)的取值范圍為:﹣1<x<0,∴當(dāng)x=﹣1時,y=a﹣b+c<0,故④正確.故選B.考點:二次函數(shù)圖象與系數(shù)的關(guān)系.6、C【分析】利用平均數(shù)、中位數(shù)、方差和標(biāo)準(zhǔn)差的定義對各選項進(jìn)行判斷.【題目詳解】解:這組數(shù)據(jù)的平均數(shù)、方差和標(biāo)準(zhǔn)差都與被涂污數(shù)字有關(guān),而這組數(shù)據(jù)的中位數(shù)為46,與被涂污數(shù)字無關(guān).故選:C.【題目點撥】本題考查了方差:它也描述了數(shù)據(jù)對平均數(shù)的離散程度.也考查了中位數(shù)、平均數(shù)和眾數(shù)的概念.掌握以上知識是解題的關(guān)鍵.7、D【分析】根據(jù)相似三角形的面積比等于相似比的平方即可解決問題.【題目詳解】解:∵,∴,∵,∴,故選:D.【題目點撥】此題考查相似三角形的性質(zhì),解題的關(guān)鍵是熟練掌握相似三角形的性質(zhì)解決問題,記住相似三角形的面積比等于相似比的平方.8、B【分析】題目給出等腰三角形有兩條邊長為4和9,而沒有明確腰、底分別是多少,所以要進(jìn)行討論,還要應(yīng)用三角形的三邊關(guān)系驗證能否組成三角形.【題目詳解】解:分兩種情況:當(dāng)腰為4時,4+4<9,不能構(gòu)成三角形;當(dāng)腰為9時,4+9>9,所以能構(gòu)成三角形,周長是:9+9+4=1.故選B.【題目點撥】本題考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進(jìn)行討論,還應(yīng)驗證各種情況是否能構(gòu)成三角形,這點非常重要,也是解題的關(guān)鍵.9、C【解題分析】試題分析:∵PA、PB是⊙O的切線,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,則∠P=360°﹣(90°+90°+130°)=50°.故選C.考點:切線的性質(zhì).10、C【分析】設(shè)有x個大和尚,則有(100-x)個小和尚,根據(jù)饅頭數(shù)=3×大和尚人數(shù)+×小和尚人數(shù)結(jié)合共分100個饅頭,即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論;【題目詳解】解:設(shè)有x個大和尚,則有(100?x)個小和尚,依題意,得:3x+(100?x)=100,解得:x=25,∴3x=75;故選:C.【題目點撥】本題主要考查了一元一次方程的應(yīng)用,掌握一元一次方程的應(yīng)用是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、(答案不唯一)【分析】可設(shè)道路的寬為xm,將4塊剩余矩形平移為一個長方形,長為(50-x)m,寬為(39-x)m.根據(jù)長方形面積公式即可列出方程.【題目詳解】解:設(shè)道路的寬為xm,依題意有

(50-x)(39-x)=1.

故答案為:.【題目點撥】本題考查由實際問題抽象出一元二次方程的知識,應(yīng)熟記長方形的面積公式.解題關(guān)鍵是利用平移把4塊試驗田平移為一個長方形的長和寬.12、【分析】由已知條件易求直角三角形AOH的面積以及扇形AOC的面積,根據(jù)陰影部分的面積=扇形AOC的面積﹣直角三角形AOH的面積,計算即可.【題目詳解】∵BA與⊙O相切于點A,∴AB⊥OA,∴∠OAB=90°,∵OA=6,AB=6,∴tan∠B=,∴∠B=30°,∴∠O=60°,∴∠OAH=30°,∴OH=OA=3,∴AH=3,∴陰影部分的面積=扇形AOC的面積﹣直角三角形AOH的面積=﹣×3×3=;故答案為:.【題目點撥】此題考查圓的性質(zhì),直角三角形中30°角所對的直角邊等于斜邊的一半,扇形面積公式,三角函數(shù).13、【分析】先求出平移后的拋物線的頂點坐標(biāo),再利用頂點式,寫出拋物線解析式,即可.【題目詳解】由題意知:拋物線的頂點坐標(biāo)是(0,1).∵拋物線向左平移3個單位∴頂點坐標(biāo)變?yōu)椋?3,1).∴得到的拋物線關(guān)系式是.故答案為.【題目點撥】本題主要考查了二次函數(shù)圖像與幾何變換,正確掌握二次函數(shù)圖像與幾何變換是解題的關(guān)鍵.14、8【分析】根據(jù)正六邊形的性質(zhì)求得∠AOH=30°,得到AH=OA,再根據(jù)求出OA即可得到答案.【題目詳解】如圖,正六邊形ABCDEF,邊心距OH=,∵∠OAB=60°,∠OHA=90°,∴∠AOH=30°,∴AH=OA,∵,∴,解得OA=8,即該正六邊形的半徑為8,故答案為:8.【題目點撥】此題考查正六邊形的性質(zhì),直角三角形30度角的性質(zhì),勾股定理,正確理解正六邊形的性質(zhì)是解題的關(guān)鍵.15、x1=3,x2=﹣1【解題分析】試題解析:(x﹣1)2=4,即x﹣1=±2,所以x1=3,x2=﹣1.故答案為x1=3,x2=﹣1.16、x>1【題目詳解】解:依題意可得,解得,所以函數(shù)的自變量的取值范圍是17、1【分析】由,得a=3b,進(jìn)而即可求解.【題目詳解】∵,∴a=3b,∴;故答案為:1.【題目點撥】本題主要考查比例式的性質(zhì),掌握比例式的內(nèi)項之積等于外項之積,是解題的關(guān)鍵.18、1【分析】根據(jù)扇形面積公式和扇形的弧長公式之間的關(guān)系:S扇形,把對應(yīng)的數(shù)值代入即可求得半徑r的長.【題目詳解】解:∵S扇形,∴,∴.故答案為1.【題目點撥】本題考查了扇形面積和弧長公式之間的關(guān)系,解此類題目的關(guān)鍵是掌握住扇形面積公式和扇形的弧長公式之間的等量關(guān)系:S扇形.三、解答題(共66分)19、(1)詳見解析;(2)詳見解析;(3)DE=1.【分析】(1)根據(jù)垂徑定理可得AD=CD,得PD是AC的垂直平分線,可判斷出PA=PC;(2)由PC=PA得出∠PAC=∠PCA,再判斷出∠ACB=90°,得出∠CAB+∠CBA=90°,再判斷出∠PCA+∠CAB=90°,得出∠CAB+∠PAC=90°,即可得出結(jié)論;(2)根據(jù)AB和DF的比設(shè)AB=3a,DF=2a,先根據(jù)三角形中位線可得OD=4,從而得結(jié)論.【題目詳解】(1)證明∵OD⊥AC,∴AD=CD,∴PD是AC的垂直平分線,∴PA=PC,(2)證明:由(1)知:PA=PC,∴∠PAC=∠PCA.∵AB是⊙O的直徑,∴∠ACB=90°,∴∠CAB+∠CBA=90°.又∵∠PCA=∠ABC,∴∠PCA+∠CAB=90°,∴∠CAB+∠PAC=90°,即AB⊥PA,∴PA是⊙O的切線;(3)解:∵AD=CD,OA=OB,∴OD∥BC,OD=BC==4,∵,設(shè)AB=3a,DF=2a,∵AB=EF,∴DE=3a﹣2a=a,∴OD=4=﹣a,a=1,∴DE=1.【題目點撥】本題考查的是圓的綜合,難度適中,需要熟練掌握線段中垂線的性質(zhì)、圓的切線的求法以及三角形中位線的相關(guān)性質(zhì).20、(1)約0.5;(2)估計這名同學(xué)投籃622次,投中的次數(shù)約是311次.【分析】(1)對于不同批次的定點投籃命中率往往誤差會比較大,為了減少誤差,我們經(jīng)常采用多批次計算求平均數(shù)的方法;

(2)投中的次數(shù)=投籃次數(shù)×投中的概率,依此列式計算即可求解.【題目詳解】解:(1)估計這名球員投籃一次,投中的概率約是;(2)622×0.5=311(次).故估計這名同學(xué)投籃622次,投中的次數(shù)約是311次.【題目點撥】本題考查頻率估計概率,解題的關(guān)鍵是掌握頻率估計概率.21、(1)35+;(2)坐板EF的寬度為()cm.【分析】(1)如圖,構(gòu)造直角三角形Rt△AMC、Rt△CGD然后利用解直角三角形分段求解扶手前端D到地面的距離即可;(2)由已知求出△EFH中∠EFH=60°,∠EHD=45°,然后由HQ+FQ=FH=20cm解三角形即可求解.【題目詳解】解:(1)如圖2,過C作CM⊥AB,垂足為M,又過D作DN⊥AB,垂足為N,過C作CG⊥DN,垂足為G,則∠DCG=60°,∵AC=BC=60cm,AC、CD所在直線與地面的夾角分別為30°、60°,∴∠A=∠B=30°,則在Rt△AMC中,CM==30cm.∵在Rt△CGD中,sin∠DCG=,CD=50cm,∴DG=CDsin∠DCG=50sin60°==,又GN=CM=30cm,前后車輪半徑均為5cm,∴扶手前端D到地面的距離為DG+GN+5=+30+5=35+(cm).(2)∵EF∥CG∥AB,∴∠EFH=∠DCG=60°,∵CD=50cm,椅子的支點H到點C的距離為10cm,DF=20cm,∴FH=20cm,如圖2,過E作EQ⊥FH,垂足為Q,設(shè)FQ=x,在Rt△EQF中,∠EFH=60°,∴EF=2FQ=2x,EQ=,在Rt△EQH中,∠EHD=45°,∴HQ=EQ=,∵HQ+FQ=FH=20cm,∴+x=20,解得x=,∴EF=2()=.答:坐板EF的寬度為()cm.【題目點撥】本題考查了解直角三角形的應(yīng)用,解題的難點在于從實際問題中抽象出數(shù)學(xué)基本圖形構(gòu)造適當(dāng)?shù)闹苯侨切危y度較大.22、40﹣5【分析】過O點作OC⊥AB的延長線于C點,垂足為C,設(shè)OC=BC=x,則AC=10+x,利用正切值的定義列出x的方程,求出x的值,進(jìn)而求出樓的高度.【題目詳解】過O點作OC⊥AB的延長線于C點,垂足為C,根據(jù)題意可知,∠OAC=30°,∠OBC=45°,AB=10米,AD=45米,在Rt△BCO中,∠OBC=45°,∴BC=OC,設(shè)OC=BC=x,則AC=10+x,在Rt△ACO中,,解得:x=5+5,則這棟樓的高度(米).【題目點撥】本題考查解直角三角形的應(yīng)用-仰角、俯角的問題以及解直角三角形方法,解題的關(guān)鍵是從實際問題中構(gòu)造出直角三角形.23、(1)補(bǔ)全表格見解析;(1)圖象見解析;當(dāng)y隨x增大而減小時,x的取值范圍是x>1.【分析】(1)根據(jù)待定系數(shù)法,把點(1,0),(0,-3)坐標(biāo)代入得,則可確定拋物線解析式為,然后把它配成頂點式得到頂點的坐標(biāo);再根據(jù)對稱性求出另一個交點坐標(biāo);(1)根據(jù)函數(shù)解析式和(1)表、描點聯(lián)線畫出函數(shù)圖像,再根據(jù)圖象性質(zhì)即可得出結(jié)論;【題目詳解】解:(1)把點(1,0),(0,-3)坐標(biāo)代入得:,解得:,拋物線解析式為,化為頂點式為:,故頂點坐標(biāo)為(1,1),對稱軸為x=1,又∵點(1,0)是交點,故另一個交點為(3,0)補(bǔ)全表格如下:拋物線頂點坐標(biāo)與x軸交點坐標(biāo)與y軸交點坐標(biāo)y=﹣x1+4x-3(1,1)(1,0)(3,0)(0,-3)(1)拋物線如圖所示:當(dāng)y隨x增大而減小時,x的取值范圍是x>1.【題目點撥】此題考查了待定系數(shù)法求二次函數(shù)解析式,以及二次函數(shù)的圖象與性質(zhì),熟練掌握待定系數(shù)法是解本題的關(guān)鍵.24、(1)y=﹣x2+4x+5;(2)點P(,)時,S四邊形APCD最大=;(3)當(dāng)M點的坐標(biāo)為(1,8)時,N點坐標(biāo)為(2,13),當(dāng)M點的坐標(biāo)為(3,8)時,N點坐標(biāo)為(2,3).【解題分析】試題分析:(1)設(shè)出拋物線解析式,用待定系數(shù)法求解即可;(2)先求出直線AB解析式,設(shè)出點P坐標(biāo)(x,﹣x2+4x+5),建立函數(shù)關(guān)系式S四邊形APCD=﹣2x2+10x,根據(jù)二次函數(shù)求出極值;(3)先判斷出△HMN≌△AOE,求出M點的橫坐標(biāo),從而求出點M,N的坐標(biāo).試題解析:(1)設(shè)拋物線解析式為y=a+9,∵拋物線與y軸交于點A(0,5),∴4a+9=5,∴a=﹣1,y=﹣+9=-+4x+5,(2)當(dāng)y=0時,-+4x+5=0,∴x1=﹣1,x2=5,∴E(﹣1,0),B(5,0),設(shè)直線AB的解析式為y=mx+n,∵A(0,5),B(5,0),∴m=﹣1,n=5,∴直線AB的解析式為y=﹣x+5;設(shè)P(x,﹣+4x+5),∴D(x,﹣x+5),∴PD=-+4x+5+x﹣5=-+5x,∵AC=4,∴S四邊形APCD=×AC×PD=2(-+5x)=-2+10x,∴當(dāng)x=時,∴S四邊形APCD最大=,(3)如圖,過M作MH垂直于對稱軸,垂足為H,∵M(jìn)N∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,∴M點的橫坐標(biāo)為x=3或x=1,當(dāng)x=1時,M點縱坐標(biāo)為8,當(dāng)x=3時,M點縱坐標(biāo)為8,∴M點的坐標(biāo)為M1(1,8)或M2(3,8),∵A(0,5),E(﹣1,0),∴直線AE解析式為y=5x+5,∵M(jìn)N∥AE,∴MN的解析式為y=5x+b,∵點N在拋物線對稱軸x=2上,∴N(2,10+b),∵AE2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論