湖南省益陽市清塘鎮(zhèn)中學(xué)高一數(shù)學(xué)文上學(xué)期期末試卷含解析_第1頁
湖南省益陽市清塘鎮(zhèn)中學(xué)高一數(shù)學(xué)文上學(xué)期期末試卷含解析_第2頁
湖南省益陽市清塘鎮(zhèn)中學(xué)高一數(shù)學(xué)文上學(xué)期期末試卷含解析_第3頁
湖南省益陽市清塘鎮(zhèn)中學(xué)高一數(shù)學(xué)文上學(xué)期期末試卷含解析_第4頁
湖南省益陽市清塘鎮(zhèn)中學(xué)高一數(shù)學(xué)文上學(xué)期期末試卷含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖南省益陽市清塘鎮(zhèn)中學(xué)高一數(shù)學(xué)文上學(xué)期期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.線性回歸方程所表示的直線必經(jīng)過點()

A.(0,0)

B.()

C.()

D.()參考答案:D略2.若是奇函數(shù),則=()A.0B.1C.-1D.2參考答案:B3.如圖,函數(shù)f(x)的圖象為折線ACB,則不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0} B.{x|﹣1≤x≤1} C.{x|﹣1<x≤1} D.{x|﹣1<x≤2}參考答案:C【考點】指、對數(shù)不等式的解法.【分析】在已知坐標(biāo)系內(nèi)作出y=log2(x+1)的圖象,利用數(shù)形結(jié)合得到不等式的解集.【解答】解:由已知f(x)的圖象,在此坐標(biāo)系內(nèi)作出y=log2(x+1)的圖象,如圖滿足不等式f(x)≥log2(x+1)的x范圍是﹣1<x≤1;所以不等式f(x)≥log2(x+1)的解集是{x|﹣1<x≤1};故選C.4.棱長和底面邊長均為1的正四棱錐的側(cè)面積為(

)A.

B.2

C.3

D.參考答案:A5.將函數(shù)的圖象向左平移個單位,再向上平移1個單位,得到g(x)的圖象.若g(x1)g(x2)=9,且x1,x2∈,則2x1﹣x2的最大值為()A. B. C. D.參考答案:A【考點】3H:函數(shù)的最值及其幾何意義;3O:函數(shù)的圖象.【分析】由已知可得g(x)=+1,若g(x1)g(x2)=9,且x1,x2∈,則g(x1)=g(x2)=3,則,結(jié)合x1,x2∈,可得答案.【解答】解:函數(shù)的圖象向左平移個單位,可得y=的圖象,再向上平移1個單位,得到g(x)=+1的圖象.若g(x1)g(x2)=9,且x1,x2∈,則g(x1)=g(x2)=3,則,即,由x1,x2∈,得:x1,x2∈{﹣,﹣,,},當(dāng)x1=,x2=﹣時,2x1﹣x2取最大值,故選:A【點評】本題考查的知識點是函數(shù)的最值及其幾何意義,函數(shù)圖象的變換,三角函數(shù)的圖象和性質(zhì),難度中檔.6.如果一個函數(shù)在其定義區(qū)間內(nèi)對任意實數(shù),都滿足,則稱這個函數(shù)是下凸函數(shù),下列函數(shù)(1);(2);(3);(4)中是下凸函數(shù)的有(

)A.(1)(2)

B.(2)(3)

C.(3)(4)

D.(1)(4)參考答案:D7.某扇形的圓心角為,半徑為2,那么該扇形弧長為

A.

B.

C.

D.60參考答案:A8.集合A可以表示為,也可以表示為{0,|x|,x+y},則y﹣x的值為(

)A.﹣1 B.0 C.1 D.﹣1或1參考答案:C【考點】集合的相等.【專題】計算題.【分析】利用集合相等的定義,緊緊抓住0這個特殊元素,結(jié)合列方程組解方程解決問題,注意集合中元素的互異性.【解答】解:∵集合A可以表示為,也可以表示為{0,|x|,x+y}∴y=0,則或解得x=0或x=±1注意到集合中元素的互異性則x=﹣1∴y﹣x=0﹣(﹣1)=1故選C.【點評】本題主要考查集合的相等,如果已知集合中有特殊元素,抓住它是簡化解題的關(guān)鍵,還需注意集合中元素的互異性,屬于基礎(chǔ)題.9.若對于任意a[-1,1],函數(shù)f(x)=x2+(a-4)x+4-2a的值恒大于零,則x的取值范圍是(

)A.(-∞?1)∪(3,+∞)

B.(-∞?1]

C.(3,+∞)

D.(-∞?1]∪[3,+∞)參考答案:A10.已知數(shù)列的通項公式為,則3

)A.不是數(shù)列中的項

B.只是數(shù)列中的第2項

C.

只是數(shù)列中的第6項

D.

是數(shù)列中的第2項或第6項參考答案:D二、填空題:本大題共7小題,每小題4分,共28分11.函數(shù)的定義域是

.參考答案:(﹣∞,﹣2)∪(2,+∞)

【考點】函數(shù)的定義域及其求法.【分析】根據(jù)二次根式的性質(zhì)得到關(guān)于x的不等式,解出即可.【解答】解:由題意得:(x+2)(x﹣2)>0,解得:x>2或x<﹣2,故函數(shù)的定義域是(﹣∞,﹣2)∪(2,+∞),故答案為:(﹣∞,﹣2)∪(2,+∞).12.已知函數(shù)是方程f(x)=0的兩實根,則實數(shù)a,b,m,n的大小關(guān)系是_________________。

參考答案:

13.命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是

.參考答案:若a+b不是偶數(shù),則a,b不都是奇數(shù)【考點】四種命題間的逆否關(guān)系.【專題】閱讀型.【分析】根據(jù)逆否命題的定義,先否定原命題的題設(shè)做結(jié)論,再否定原命題的結(jié)論做題設(shè),就得到原命題的逆否命題.【解答】解:∵“a,b都是奇數(shù)”的否命題是“a,b不都是奇數(shù)”,“a+b是偶數(shù)”的否命題是“a+b不是偶數(shù)”,∴命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.故答案為:若a+b不是偶數(shù),則a,b不都是奇數(shù).【點評】本題考查四種命題間的逆否關(guān)系,解題時要注意四種命題間的相互轉(zhuǎn)化.14.設(shè)全集=__________________.參考答案:(1,3)

略15.給定下列結(jié)論:①已知命題p:,;命題:,則命題“且”是假命題;②已知直線l1:,l2:x-by+1=0,則的充要條件是;③若,,則;④圓,與直線相交,所得的弦長為2;⑤定義在上的函數(shù),則是周期函數(shù);其中正確命題的序號為___

__(把你認(rèn)為正確的命題序號都填上)參考答案:③⑤16.在△ABC中,已知BC=4,AC=3,cos(A﹣B)=,則△ABC的面積為.參考答案:【考點】兩角和與差的余弦函數(shù).【分析】由題意得到∠BAC大于∠B,如圖所示,作AD,使∠BAD=∠B,得到∠DAC=∠BAC﹣∠B,設(shè)AD=BD=x,則DC=4﹣x,在△ADC中,由余弦定理列出關(guān)于x的方程,求出方程的解,得到x的值,確定出AD與DC的長,在三角形ADC中,利用余弦定理即可求出cosC的值,可得sinC的值,從而求得△ABC面積是AC?BC?sinC的值.【解答】解:△ABC中,BC=4,AC=3,cos(A﹣B)=,∴A>B,(A﹣B)為銳角,如圖,作AD,使∠BAD=∠B,則∠DAC=∠BAC﹣∠B,即cos∠DAC=cos(∠BAC﹣∠B)=.設(shè)AD=BD=x,則DC=4﹣x,在△ADC中,由余弦定理得:CD2=AD2+AC2﹣2AD?AC?cos∠DAC,即(4﹣x)2=x2+9﹣2x×3×,解得:x=2,∴AD=2,DC=2,在△ADC中,由余弦定理得cosC===,∴sinC==,故△ABC面積是:AC?BC?sinC=×3×4×=,故答案是:.17.若a>0,b>0,化簡成指數(shù)冪的形式:=.參考答案:【考點】有理數(shù)指數(shù)冪的運算性質(zhì).【專題】函數(shù)的性質(zhì)及應(yīng)用.【分析】利用有理指數(shù)冪的運算法則求解即可.【解答】解:==.故答案為:.【點評】本題考查有理指數(shù)冪的運算法則的應(yīng)用,考查計算能力、三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(12分)已知A={x|2x>1},B={x|﹣1<x<1}.(1)求A∪B及(?RA)∩B;(2)若集合C={x|x<a},滿足B∪C=C,求實數(shù)a的取值范圍.參考答案:【考點】交、并、補(bǔ)集的混合運算.【分析】(1)化簡集合A,根據(jù)并集的定義寫出A∪B,再寫出CRA與(CRA)∩B;(2)根據(jù)B∪C=C得出B?C,從而得出a的取值范圍.【解答】解:(1)集合A={x|2x>1}={x|x>0},…(2分)又B={x|﹣1<x<2},∴A∪B={x|x>﹣1};…(4分)∵A={x|x>0},∴CRA={x|x≤0};…∴(CRA)∩B={x|﹣1<x≤0};…(7分)(2)∵B={x|﹣1<x<2},C={x|x<a},且B∪C=C,∴B?C,∴a≥2,即實數(shù)a的取值范圍是a≥2…12分【點評】本題考查了集合的化簡與運算問題,是基礎(chǔ)題目.19.已知集合,,求:(1);(2);(3)參考答案:(1)

2分(2)

3分(3)

3分略20.圖1是某縣參加2007年高考的學(xué)生身高條形統(tǒng)計圖,從左到右的各條形圖表示學(xué)生人數(shù)依次記為A1、A2、…A10(如A2表示身高(單位:cm)在[150,155內(nèi)的人數(shù)]。圖2是統(tǒng)計圖1中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個算法流程圖?,F(xiàn)要統(tǒng)計身高在160~180cm(含160cm,不含180cm)的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是(

) A、i<6

B、i<7

C、i<8

D、i<9參考答案:C21.如圖所示,A,B分別是單位圓與x軸、y軸正半軸的交點,點P在單位圓上,∠AOP=θ(0<θ<π),C點坐標(biāo)為(﹣2,0),平行四邊形OAQP的面積為S.(1)求?+S的最大值;(2)若CB∥OP,求sin(2θ﹣)的值.參考答案:【考點】G9:任意角的三角函數(shù)的定義;GD:單位圓與周期性.【分析】(1)求出A(1,0),B(0,1).P(cosθ,sinθ),然后求解?,以及平行四邊形OAQP的面積,通過兩角和與差的三角函數(shù),以及正弦函數(shù)的值域求解即可.(2)利用三角函數(shù)的定義,求出sinθ,cosθ,利用二倍角公式以及兩角和與差的三角函數(shù)求解表達(dá)式的值.【解答】解:(1)由已知,得A(1,0),B(0,1).P(cosθ,sinθ),因為四邊形OAQP是平行四邊形,所以=+=(1+cosθ,sinθ).所以?=1+cosθ.又平行四邊形OAQP的面積為S=|?|sinθ=sinθ,所以?+S=1+cosθ+sinθ=sin(θ+)+1.又0<θ<π,所以當(dāng)θ=時,?+S的最大值為+1.(2)由題意,知=(2,1),=(cosθ,sinθ),因為CB∥OP,所以cosθ=2sinθ.又0<θ<π,cos2θ+sin2θ=1,解得sinθ=,cosθ=,所以sin2θ=2sinθcosθ=,cos2θ=cos2θ﹣sin2θ=.所以sin(2θ﹣)=sin2θcos﹣cos2θsin=×﹣×=.22.如圖,在一張長為2a米,寬為a米(a>2)的矩形鐵皮的四個角上,各剪去一個邊長是x米(0<x≤1)的小正方形,折成一個無蓋的長方體鐵盒,設(shè)V(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論