數(shù)學(xué)中考試題分類匯編函數(shù)與幾何圖形_第1頁
數(shù)學(xué)中考試題分類匯編函數(shù)與幾何圖形_第2頁
數(shù)學(xué)中考試題分類匯編函數(shù)與幾何圖形_第3頁
數(shù)學(xué)中考試題分類匯編函數(shù)與幾何圖形_第4頁
數(shù)學(xué)中考試題分類匯編函數(shù)與幾何圖形_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2008年中考試卷分類—函數(shù)與幾何圖形(2)如圖4,正方形ABCD的邊長為10,四個全等的小正方形的對稱中心分別在正方形ABCD的極點(diǎn)上,且它們的各邊與正方形ABCD各邊平行或垂直.若小正方形的邊長為x,且0<x≤10,暗影部分的面積為y,則能反應(yīng)y與x之間函數(shù)關(guān)系的大概圖象是(D)2.(連云港)如圖,現(xiàn)有兩塊全等的直角三角形紙板Ⅰ,Ⅱ,它們兩直角邊的長分別為和2.將它們分別擱置于平面直角坐標(biāo)系中的AOB,COD處,直角邊OB,OD

1在軸上.向來尺從上方緊靠兩紙板擱置,讓紙板Ⅰ沿直尺邊沿平行挪動.當(dāng)紙板Ⅰ挪動至PEF處時,設(shè)PE,PF與OC分別交于點(diǎn)M,N,與x軸分別交于點(diǎn)G,H.(1)求直線AC所對應(yīng)的函數(shù)關(guān)系式;(2)當(dāng)點(diǎn)P是線段AC(端點(diǎn)除外)上的動點(diǎn)時,嘗試究:①點(diǎn)M到x軸的距離h與線段BH的長能否總相等?請說明原因;②兩塊紙板重疊部分(圖中的暗影部分)的面積S能否存在最大值?若存在,求出這個最大值及S取最大值時點(diǎn)P的坐標(biāo);若不存在,請說明原因.解:(1)由直角三角形紙板的兩直角邊的長為1和2,知A,C兩點(diǎn)的坐標(biāo)分別為(12),,(21),.設(shè)直線AC所對應(yīng)的函數(shù)關(guān)系式為ykxb.···························2分kb,k,有解得.2kb.b13所以,直線AC所對應(yīng)的函數(shù)關(guān)系式為yx3.·····················4分(2)①點(diǎn)M到x軸距離h與線段BH的長總相等.y由于點(diǎn)C的坐標(biāo)為(2,1),所以,直線OC所對應(yīng)的函數(shù)關(guān)系式為y1x.A又由于點(diǎn)P在直線AC上,2PCI所以可設(shè)點(diǎn)P的坐標(biāo)為(a,3a).MNII過點(diǎn)M作x軸的垂線,設(shè)垂足為點(diǎn)K,則有MKOGKBHxh.EF由于點(diǎn)M在直線OC上,所以有M(2h,h).···········6分(第24題答圖)由于紙板為平行挪動,故有EF∥OB,即EF∥GH.又EFPF,所以PHGH.法一:故Rt△MKG∽Rt△PHG∽Rt△PFE,進(jìn)而有GKGHEF1.MKPHPF2得GK1MK1h,GH1PH1(3a).2222所以O(shè)GOKGK2h1h3h.22又有OGOHGHa1(3a)31).·····················8分2(a所以3h3(a21),得ha1,而BHOHOBa1,22進(jìn)而總有hBH.·············································10分法二:故Rt△PHG∽Rt△PFE,可得GHEF1.1PH1(3PHPF2故GHa).22所以O(shè)GOHGHa1(3a)3(a1).22故G點(diǎn)坐標(biāo)為3(a,.21)0設(shè)直線PG所對應(yīng)的函數(shù)關(guān)系式為ycxd,3acad,c2則有3解得1)d33a0c(ad.2所以,直線PG所對的函數(shù)關(guān)系式為y2x(33a).·····················8分將點(diǎn)M的坐標(biāo)代入,可得h4h(33a).解得ha1.而BHOHOBa1,進(jìn)而總有hBH.·······················10分1②由①知,點(diǎn)M的坐標(biāo)為(2a2,a1),點(diǎn)N的坐標(biāo)為a,a.2SS△ONHS△ONG1NHOH1OGh11aa13a3(a1)2222221a23a1a23.······························12分33224228當(dāng)a3時,S有最大值,最大值為3.28S取最大值時點(diǎn)33P的坐標(biāo)為,.223.(沈陽)以下圖,在平面直角坐標(biāo)系中,矩形ABOC的邊BO在x軸的負(fù)半軸上,邊OC在y軸的正半軸上,且AB=1,OB=3,矩形ABOC繞點(diǎn)O按順時針方向旋轉(zhuǎn)600后獲得矩形EFOD.點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)E,點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)F,點(diǎn)C的對應(yīng)點(diǎn)為點(diǎn)D,拋物線y=ax2+bx+c過點(diǎn)A,E,D.(1)判斷點(diǎn)E能否在y軸上,并說明原因;(2)求拋物線的函數(shù)表達(dá)式;(3)在x軸的上方能否存在點(diǎn)P,點(diǎn)Q,使以點(diǎn)O,B,P,Q為極點(diǎn)的平行四邊形的面積是矩形ABOC面積的2倍,且點(diǎn)P在拋物線上,若存在,懇求出點(diǎn)P,點(diǎn)Q的坐標(biāo);若不存在,請說明原因.解:(1)點(diǎn)E在y軸上······································1分原因以下:連結(jié)AO,以下圖,在Rt△ABO中,QAB1,BO3,AO2sinAOB1,AOB30o2由題意可知:AOE60oBOEAOBAOE30o60o90oQ點(diǎn)B在x軸上,點(diǎn)E在y軸上.·······························3分(2)過點(diǎn)D作DMx軸于點(diǎn)MQOD,DOM30o1在Rt△DOM中,DM1,OM322Q點(diǎn)D在第一象限,點(diǎn)D的坐標(biāo)為31······································5分2,2由(1)知EOAO2,點(diǎn)E在y軸的正半軸上點(diǎn)E的坐標(biāo)為(0,2)點(diǎn)A的坐標(biāo)為(31),········································6分Q拋物線yax2bxc經(jīng)過點(diǎn)E,c2由題意,將A(31代入yax2bx2中得31),,D,223a3b21a89331解得b53a22b429所求拋物線表達(dá)式為:y8x253x2························9分99(3)存在切合條件的點(diǎn)P,點(diǎn)Q.·······························10分原因以下:Q矩形ABOC的面積ABgBO3以O(shè),B,P,Q為極點(diǎn)的平行四邊形面積為23.由題意可知OB為此平行四邊形一邊,又QOB3OB邊上的高為2·············································11分依題意設(shè)點(diǎn)P的坐標(biāo)為(m,2)Q點(diǎn)P在拋物線y8x253x2上998m253m2299解得,m10,m2

5381,,53,228以O(shè),B,P,Q為極點(diǎn)的四邊形是平行四邊形,PQ∥OB,PQOB3,當(dāng)點(diǎn)P1的坐標(biāo)為(0,2)時,點(diǎn)Q的坐標(biāo)分別為Q1(3,2),Q2(3,2);

yEFACDxBOM當(dāng)點(diǎn)P253,時,的坐標(biāo)為82點(diǎn)Q的坐標(biāo)分別為Q3133,,Q433,.8228(徐州)如圖1,一副直角三角板知足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°【操作】將三角板DEF的直角極點(diǎn)E擱置于三角板ABC的斜邊AC上,再將三..角板DEF繞點(diǎn)E旋轉(zhuǎn),并使邊DE與邊AB交于點(diǎn)P,邊EF與邊BC于點(diǎn)Q..........【研究一】在旋轉(zhuǎn)過程中,(1)如圖2,當(dāng)CE=1時,EP與EQ知足如何的數(shù)目關(guān)系?并給出證明.EA(2)如圖3,當(dāng)CE=2時EP與EQ知足如何的數(shù)目關(guān)系?,并說明原因.EA3)依據(jù)你對(1)、(2)的研究結(jié)果,試寫出當(dāng)CE=m時,EP與EQ知足的EA數(shù)目關(guān)系式為_________,此中m的取值范圍是_______(直接寫出結(jié)論,不用證明)【研究二】若,AC=30cm,連續(xù)PQ,設(shè)△EPQ的面積為S(cm2),在旋轉(zhuǎn)過程中:1)S能否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,說明原因.(2)跟著S取不一樣的值,對應(yīng)△EPQ的個數(shù)有哪些變化?不出相應(yīng)S值的取值范圍.5.(河南)如圖,直線y4和x軸、y軸的交點(diǎn)分別為B、C,x43點(diǎn)A的坐標(biāo)是(-2,0).(1)試說明△ABC是等腰三角形;(2)動點(diǎn)M從A出發(fā)沿x軸向點(diǎn)B運(yùn)動,同時動點(diǎn)N從點(diǎn)B出發(fā)沿線段BC向點(diǎn)C運(yùn)動,運(yùn)動的速度均為每秒1個單位長度.當(dāng)此中一個動點(diǎn)抵達(dá)終點(diǎn)時,他們都停止運(yùn)動.設(shè)M運(yùn)動t秒時,△MON的面積為S.①求S與t的函數(shù)關(guān)系式;②設(shè)點(diǎn)M在線段OB上運(yùn)動時,能否存在S=4的情況?若存在,求出對應(yīng)的t值;若不存在請說明原因;③在運(yùn)動過程中,當(dāng)△MON為直角三角形時,求t的值.6.如圖20,在平面直角坐標(biāo)系中,四邊形OABC是矩形,點(diǎn)B的坐標(biāo)為(4,3).平行于對角線AC的直線m從原點(diǎn)O出發(fā),沿x軸正方向以每秒1個單位長度的速度運(yùn)動,設(shè)直線m與矩形OABC的兩邊..分別交于點(diǎn)M、N,直線m運(yùn)動的時間為t(秒).(1)點(diǎn)A的坐標(biāo)是__________,點(diǎn)C的坐標(biāo)是__________;(2)當(dāng)t=秒或秒時,MN=1AC;(3)設(shè)△OMN的面積為S,求S與t的函數(shù)關(guān)2系式;(4)研究(3)中獲得的函數(shù)S有沒有最大值?如有,求出最大值;若沒有,要說明原因.解:(1)(4,0),(0,3);································2分2,6;············································4分當(dāng)0<t≤4時,OM=t.由△OMN∽△OAC,得OMON,OAOC∴ON=3t,S=3t2.················6分48當(dāng)4<t<8時,如圖,∵OD=t,∴AD=t-4.方法一:由△DAM∽△AOC,可得AM=由△BMN∽△BAC,可得BN=

3(t4),∴BM=6-3t.············7分444BM=8-t,∴CN=t-4.··············8分3S=矩形OABC的面積-Rt△OAM的面積-Rt△MBN的面積-Rt△NCO的面積=12-3(t4)-1(8-t)(6-3t)-3(t4)2242=3t23t.·····································10分8方法二:易知四邊形ADNC是平行四邊形,∴CN=AD=t-4,BN=8-t.···············7分由△BMN∽△BAC,可得BM=3BN=6-3t,∴AM=3(t4).·······8分444以下同方法一.有最大值.方法一:當(dāng)0<t≤4時,∵拋物線S=3t2的張口向上,在對稱軸t=0的右邊,S隨t的增大而增大,8∴當(dāng)t=4時,S可取到最大值當(dāng)4<t<8時,

42=6;·······················11分8∵拋物線S=3t23t的張口向下,它的極點(diǎn)是(4,6),∴S<6.8綜上,當(dāng)t=4時,S有最大值6.······························12分方法二:32,t≤4∵S=832,t88∴當(dāng)0<t<8時,畫出S與t的函數(shù)關(guān)系圖像,以下圖.·············11分明顯,當(dāng)t=4時,S有最大值6.(郴州)如圖10,平行四邊形ABCD中,AB=5,BC=10,BC邊上的高AM=4,E為BC邊上的一個動點(diǎn)(不與B、C重合).過E作直線AB的垂線,垂足為F.FE與DC的延伸線訂交于點(diǎn)G,連結(jié)DE,DF..(1)求證:BEF∽CEG.(2)當(dāng)點(diǎn)E在線段BC上運(yùn)動時,△BEF和△CEG的周長之間有什么關(guān)系?并說明你的原因.(3)設(shè)BE=x,△DEF的面積為y,請你求出y和x之間的函數(shù)關(guān)系式,并求出當(dāng)x為什么值時,y有最大值,最大值是多少?(1)

由于四邊形

ABCD

是平行四邊形,

所以

ABPDG

··············1分所以

B

GCE,

G

BFE所以△BEF∽△CEG······································3分(2)△BEF與△CEG的周長之和為定值.····························4分原因一:過點(diǎn)C作FG的平行線交直線AB于H,由于GF⊥AB,所以四邊形FHCG為矩形.所以FH=CG,F(xiàn)G=CH所以,△BEF與△CEG的周長之和等于BC+CH+BH由BC=10,AB=5,AM=4,可得CH=8,BH=6,所以BC+CH+BH=24······································6分原因二:由AB=5,AM=4,可知HD在Rt△BEF與Rt△GCE中,有:A4BE,3BE,4EC,3CE,F(xiàn)EFBFGEGC5555BMC所以,△BEF的周長是12BE,△ECG的周長是xE12CEG55又BE+CE=10,所以VBEF與VCEG的周長之和是24.··················6分(3)設(shè)BE=x,則EF4x,GC3(10x)55所以y1143x)5]6x222EFgDG2gx[(1025x················8分2555配方得:y6(x55)2121.256655所以,當(dāng)x時,y有最大值.·······························9分6121最大值為.8.(鎮(zhèn)江)如圖,在直角坐標(biāo)系xoy中,點(diǎn)P為函數(shù)y1x2在第一象限內(nèi)的圖象上的4任一點(diǎn),點(diǎn)A的坐標(biāo)為(0,1),直線l過B(0,-1)且與x軸平行,過P作y軸的平行線分別交x軸,l于C,Q,連結(jié)AQ交x軸于H,直線PH交y軸于R.(1)求證:H點(diǎn)為線段AQ的中點(diǎn);(2)求證:①四邊形APQR為平行四邊形;②平行四邊形APQR為菱形;(3)除P點(diǎn)外,直線PH與拋物線y1x2有無其余公共點(diǎn)?并說明原因.4(1)法一:由題可知AOCQ1.QAOHQCH90o,AHOQHC,AOH≌△QCH.·······································(1分)OHCH,即H為AQ的中點(diǎn).····························(2分)法二:QA(01),,B(0,1),OAOB.···························(1分)又BQ∥x軸,HAHQ.··································(2分)(2)①由(1)可知AHQH,AHRQHP,QAR∥PQ,RAHPQH,RAH≌△PQH.······································(3分)ARPQ,又AR∥PQ,四邊形APQR為平行四邊形.·····················(4分)②設(shè)P12,QPQ∥y軸,則Q(m,1),則PQ112.m,m4m4過P作PGy軸,垂足為G,在Rt△APG中,1m221m221m2APAG2PG21m211PQ.444平行四邊形APQR為菱形.··································(6分)(3)設(shè)直線PR為ykxb,由OHCH,得Hm,2,P122m,m代入得:4mkb0,km,m122直線PR為y2.···········(7分)11x4mkm2b2.2bm.4m4設(shè)直線PR與拋物線的公共點(diǎn)為12,代入直線PR關(guān)系式得:x,x412m121m)20,解得xm.得公共點(diǎn)為12.xxm0,(xm,m42444所以直線PH與拋物線y1x2只有一個公共點(diǎn)P.4(無錫)如圖,已知點(diǎn)A從(1,0)出發(fā),以1個單位長度/秒的速度沿x軸向正方向運(yùn)動,以O(shè),A為極點(diǎn)作菱形OABC,使點(diǎn)B,C在第一象限內(nèi),且∠AOC=600,;以P(0,3)為圓心,PC為半徑作圓.設(shè)點(diǎn)A運(yùn)動了t秒,求:(1)點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示);(2)當(dāng)點(diǎn)A在運(yùn)動過程中,全部使⊙P與菱形OABC的邊所在直線相切的的值.解:(1)過C作CDx軸于D,QOA1t,OC1t,y1t,DCOCsin60o3(1t),ODOCcos60oPC22B1t,3(1t)ODAx點(diǎn)C的坐標(biāo)為.·····(2分)圖122(2)①當(dāng)eP與OC相切時(如圖1),切點(diǎn)為C,此時PCOC,OPcos30o,3yOC1t3g,CB2PE331.·········(4分)Oxt2A圖2②當(dāng)eP與OA,即與x軸相切時(如圖2),則切點(diǎn)為O,PCOP,過P作PEOC于E,則OE1OC,···························(5分)21tOPcos30o33,t331.·························(7分)22③當(dāng)eP與AB所在直線相切時(如圖3),設(shè)切點(diǎn)為F,PF交OC于G,則PFOC,F(xiàn)G3(1t)CD2,PCPFOPsin30o3(1t).·····························(8分)2過C作CHy軸于H,則PH2CH2PC2,yCHBPGxOAF2221t3(1t)33(1t),22322化簡,得(t1)2183(t1)270,解得t19366,Qt936610,t93661.所求t的值是331,331和93661.210.(遼寧)如圖14,在RtABC中,∠A=900,AB=AC,BC=42,還有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB,AC上,且G,F分別是AB,AC的中點(diǎn).(1)求等腰梯形DEFG的面積;(2)操作:固定ABC,將等腰梯形DEFG以每秒1個單位的速度沿BC方向向右運(yùn)動,直到點(diǎn)D與點(diǎn)C重合時停止.設(shè)運(yùn)動時間為x秒,運(yùn)動后的等腰梯形為DEF′G′(如圖15).研究1:在運(yùn)動過程中,四邊形BDG′G可否是菱形?若能,懇求出此時x的值;若不可以,請說明原因.研究2:設(shè)在運(yùn)動過程中ABC與等腰梯形DEFG重疊部分的面積為y,求y與x的函數(shù)關(guān)系式.解:如圖6,(1)過點(diǎn)G作GMBC于M.QABAC,BAC90o,BC42,G為AB中點(diǎn)GM2.A又QG,F(xiàn)分別為AB,AC的中點(diǎn)GF1GFBC22················2分21(D)BC(E)S梯形DEFG(2242)26M圖62等腰梯形DEFG的面積為6.·····································3分(2)能為菱形如圖7,由BG∥DG,GG∥BC四邊形BDGG是平行四邊形A當(dāng)BDBG1AB2時,四邊形BDGG為菱形,此時可求得x2FF2GG當(dāng)x2秒時,四邊形BDGG為菱形.(3)分兩種狀況:①當(dāng)0≤x22時,BDMEC方法一:QGM2,SYBDGG2x圖7重疊部分的面積為:y62x當(dāng)0≤x22時,y與x的函數(shù)關(guān)系式為y6102x···················分②當(dāng)22≤x≤42時,A設(shè)FC與DG交于點(diǎn)P,則PDCPCD45oGFGFPCPD90o,PCPDBDQCE1作PQDC于Q,則PQDQ(42x)圖8QC2重疊部分的面積為:y1(42x)1(42x)1(42x)21x222x82244如圖14,已知半徑為1的⊙O1與x軸交于A,B兩點(diǎn),OM為⊙O1的切線,切點(diǎn)為M,圓心O1的坐標(biāo)為(2,0),二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A,B兩點(diǎn).(1)求二次函數(shù)的分析式;(2)求切線OM的函數(shù)分析式;(3)線段OM上能否存在一點(diǎn)P,使得以P,O,A為極點(diǎn)的三角形與OO1M相像.若存在,懇求出全部切合條件的點(diǎn)P的坐標(biāo);若不存在,請說明原因.解:(1)Q圓心O1的坐標(biāo)為(2,0),eO1半徑為1,A(10),,B(3,0)······················································1分Q二次函數(shù)yx2bxc的圖象經(jīng)過點(diǎn)A,B,1bc0可得方程組93bc······································2分0b4二次函數(shù)分析式為yx24x3·····················3解得:分c3(2)過點(diǎn)M作MFx軸,垂足為F.·······························4分QOM是eO1的切線,M為切點(diǎn),O1MOM(圓的切線垂直于經(jīng)過切點(diǎn)的半徑).在Rt△OO1M中,sinO1OMO1M1OO12yQO1OM為銳角,O1OM30o5M·············分P2go233,OHAFO1BxOMOO1cos302在Rt△MOF中,OFOMgcos30o333.22MFOMgsin30o313.22點(diǎn)M坐標(biāo)為3,3········································6分22設(shè)切線OM的函數(shù)分析式為ykx(k0),由題意可知33k,k3······7分223切線OM的函數(shù)分析式為y3x·······························8分3(3)存在.···············································9分①過點(diǎn)A作AP1x軸,與OM交于點(diǎn)P1.可得Rt△APO1∽Rt△MO1O(兩角對應(yīng)相等兩三角形相像)go3,,3tan30P1133

···················10分②過點(diǎn)A作AP2OM,垂足為P2,過P2點(diǎn)作P2HOA,垂足為H.可得Rt△AP2O∽Rt△O1MO(兩角對應(yīng)相等兩三角開相像)在Rt△OP2A中,QOA1,OP2OAgcos30o3,2在Rt△OP2H中,OHOP2gcosAOP233322,4P2HOP2gsinAOP2313,3,3····················11分224P244切合條件的P點(diǎn)坐標(biāo)有1,3,3,3344如圖9,在平面直角坐標(biāo)系中,以點(diǎn)C(1,1)為圓心,2為半徑作圓,交x軸于A,B兩點(diǎn),張口向下的拋物線經(jīng)過點(diǎn)A,B,且其極點(diǎn)P在⊙C上.(1)求∠ACB的大小;(2)寫出A,B兩點(diǎn)的坐標(biāo);(3)試確立此拋物線的分析式;(4)在該拋物線上能否存在一點(diǎn)D,使線段OP與CD相互均分?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明原因.解:(1)作CHx軸,H為垂足,QCH1,半徑CB2·······················1分QBCH60o,ACB120o·················分32)QCH1,半徑CB2HB

3,故

A(1

3,0),

···················5分B(1

3,0)

······························6分(3)由圓與拋物線的對稱性可知拋物線的極點(diǎn)

P的坐標(biāo)為

(13),

···············7分設(shè)拋物線分析式

y

a(x1)2

3·····································8分把點(diǎn)

B(1

3,0)

代入上式,解得

a

1

·······························9分y

x2

2x

2··············································10

分(4)假定存在點(diǎn)D使線段OP與CD相互均分,則四邊形OCPD是平行四邊形····11分PC∥OD且PCOD.QPC∥y軸,點(diǎn)D在y12分軸上.···································又QPC2,OD2,即D(0,2).又D(0,2)知足yx22x2,點(diǎn)D在拋物線上··············································13分所以存在D(0,2)使線段OP與CD相互均分.13.(蕪湖)如圖,已知A(4,0),B(0,4),現(xiàn)以A點(diǎn)為位似中心,相像比為9:4,將OB向右邊放大,B點(diǎn)的對應(yīng)點(diǎn)為C.(1)求C點(diǎn)坐標(biāo)及直線BC的分析式;(2)拋物線經(jīng)過B、C兩點(diǎn),且極點(diǎn)落在x軸正半軸上,求該拋物線的分析式并畫出函數(shù)圖象;(3)現(xiàn)將直線BC繞B點(diǎn)旋轉(zhuǎn)與拋物線訂交與另一點(diǎn)P,請找出拋物線上全部知足到直線AB距離為32的點(diǎn)P.解:(1)過C點(diǎn)向x軸作垂線,垂足為D,由位似圖形性質(zhì)可知:△ABO∽△ACD,∴AOBO4.ADCD9由已知A(4,0),B(0,4)可知:AO4,BO4.∴ADCD9.∴C點(diǎn)坐標(biāo)為(5,9).·······2分直線BC的分析是為:y4x09450化簡得:yx4·····················3分(2)設(shè)拋物線分析式為yax2bxc(a0),由題4c意得:925a5bc,b24ac0a2125a11b245解得:b14c24c14∴解得拋物線分析式為y1x24x4或y21x24x4.1x24x255又∵y24的極點(diǎn)在x軸負(fù)半軸上,不合題意,故舍去.255∴知足條件的拋物線分析式為yx24x4····························5分(正確畫出函數(shù)yx24x4圖象)································7分(3)將直線BC繞B點(diǎn)旋轉(zhuǎn)與拋物線訂交與另一點(diǎn)P,設(shè)P到直線AB的距離為h,故P點(diǎn)應(yīng)在與直線AB平行,且相距32的上下兩條平行直線l1和l2上.·······8分由平行線的性質(zhì)可得:兩條平行直線與y軸的交點(diǎn)到直線BC的距離也為32.如圖,設(shè)l1與y軸交于E點(diǎn),過E作EF⊥BC于F點(diǎn),在Rt△BEF中EFh32,EBFABO45o,∴BE6.∴能夠求得直線l1與y軸交點(diǎn)坐標(biāo)為(0,10)···················10分同理可求得直線l2與y軸交點(diǎn)坐標(biāo)為(0,2)······························11分∴兩直線分析式l1:yx10;l2:yx2.依據(jù)題意列出方程組:⑴yx24x4;⑵yx24x4yx10yx2x16x21x32;x43∴解得:;;y116y29y30y41∴知足條件的點(diǎn)P有四個,它們分別是P1(6,16),P2(1,9),P3(2,0),P4(3,1)(大連)如圖24-1,拋物線y=x2的極點(diǎn)為P,A、B是拋物線上兩點(diǎn),AB∥x軸,四邊形ABCD為矩形,CD邊經(jīng)過點(diǎn)P,AB=2AD.⑴求矩形ABCD的面積;⑵如圖24-2,若將拋物線“y=x2”,改為拋物線“y=x2+bx+c”,其余條件不變,請猜想矩形ABCD的面積;⑶若將拋物線“y=x2+bx+c”改為拋物線“y=ax2+bx+c”,其余條件不變,請猜想矩形ABCD的面積(用a、b、c表示,并直接寫出答案).附帶題:若將24題中“y=x2”改為“y=ax2+bx+c”,“AB=2AD”條件不要,其余條件不變,研究矩形ABCD面積為常數(shù)時,矩形ABCD需要知足什么條件?并說明原因.(大連)如圖,△ABC的高AD為3,BC為4,直線EF∥BC,交線段AB于E,交線段AC于F,交AD于G,以EF為斜邊作等腰直角三角形PEF(點(diǎn)P與點(diǎn)A在直線EF的異側(cè)),設(shè)EF為x,△PEF與四邊形BCEF重合部分的面積為y.⑴求線段AG(用x表示);⑵求y與x的函數(shù)關(guān)系式,并求x的取值范圍.16.(株洲)如圖(1),在平面直角坐標(biāo)系中,點(diǎn)

A的坐標(biāo)為(

1,-2),點(diǎn)B的坐標(biāo)為(

3,-1),二次函數(shù)

y=-x2的圖象為

l1.

(1)平移拋物線

l1,使平移后的拋物線過點(diǎn)

A,但可是點(diǎn)

B,寫出平移后的拋物線的一個分析式(任寫一個即可)

.(2)平移拋物線

l1,使平移后的拋物線過A、B兩點(diǎn),記拋物線為l2,如圖(2),求拋物線l2的函數(shù)分析式及極點(diǎn)C的坐標(biāo).(3)設(shè)P為y軸上一點(diǎn),且S△ABC=S△ABP,求點(diǎn)P的坐標(biāo).(4)請在圖(2)上用尺規(guī)作圖的方式研究拋物線l2上能否存在點(diǎn)Q,使QAB為等腰三角形.若存在,請判斷點(diǎn)Q共有幾個可能的地點(diǎn)(保存作圖印跡);若不存在,請說明原因.(1)yx22x3或yx24x5等(知足條件即可)(2)設(shè)l2的分析式為yx2bxc,聯(lián)立方程組21bc,193bc9,c11,則l2的分析式為y29x11,3解得:b2x222分點(diǎn)C的坐標(biāo)為(9,7)4416分(3)如答圖23-1,過點(diǎn)A、B、C三點(diǎn)分別作x軸的垂線,垂足分別為D、E、F,則AD2,CF7,BE1,DE2,DF5,F(xiàn)E3.1644得:SABCS梯形ABEDS梯形BCFES梯形ACFD15.516分延伸BA交y軸于點(diǎn)G,直線AB的分析式為y1x5,則點(diǎn)G的坐標(biāo)為(0,5),設(shè)點(diǎn)P的坐標(biāo)為(0,h)222①當(dāng)點(diǎn)P位于點(diǎn)G的下方時,PG5h,連結(jié)AP、BP,則SABPSBPGSAPG5h,22又SABCSABP15,得h55,點(diǎn)P的坐標(biāo)為(0,55).6161616分②當(dāng)點(diǎn)P位于點(diǎn)G的上方時,5h,同理h25,點(diǎn)P的坐標(biāo)為(0,25).PG1616255)或(0,綜上所述所求點(diǎn)P的坐標(biāo)為(0,25)71616分作圖印跡如答圖23-2所示.由圖可知,知足條件的點(diǎn)有Q1、Q2、Q3、Q4,共4個可能的地點(diǎn).10分FE答圖23-1答圖23-2(南昌)如圖,拋物線y1=-ax2-ax+1經(jīng)過點(diǎn)P(-,9),且與拋128物線y2=ax2-ax-1訂交于A,B兩點(diǎn).(1)求a值;(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左側(cè)),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左側(cè)),察看M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并經(jīng)過計算說明;(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為XA,XB,若在x軸上有一動點(diǎn)Q(x,0),且XA≤x≤XB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D兩點(diǎn),試問當(dāng)x為什么值時,線段CD有最大值?其最大值為多少?解:()QP19在拋物線yax2ax1上,點(diǎn),12811a1a19,·········································2分428解得a1.···············································3分21111,y211(2)由(1)知a,拋物線y1x2xx2x1.······5分1x21x22222當(dāng)10時,解得x12,x21.y22PAQ點(diǎn)M在點(diǎn)N的左側(cè),xM2,xN1.·······6分x當(dāng)1x21xMEONF10時,解得x31,x42.B22Q點(diǎn)E在點(diǎn)F的左側(cè),xE1,xF27.····························分QxMxF0,xNxE0,點(diǎn)M與點(diǎn)F對稱,點(diǎn)N與點(diǎn)E對稱.······························8分(3)Qa10.y2P拋物線y1張口向下,拋物線y2張口向上.A·········9分CxOQ依據(jù)題意,得CDy1y2BD1x21x11x21x1x22.····················11分2222QxA≤x≤xB,當(dāng)x0時,CD有最大值2.18.(山西)如圖,已知直線l1的分析式為y=3x+6,直線l1與x軸、y軸分別訂交于A、B兩點(diǎn),直線l2經(jīng)過B、C兩點(diǎn),點(diǎn)C的坐標(biāo)為(8,0),又已知點(diǎn)P在x軸上從點(diǎn)A向點(diǎn)C挪動,點(diǎn)Q在直線l2從點(diǎn)C向點(diǎn)B挪動。點(diǎn)P、Q同時出發(fā),且挪動的速度都為每秒1個單位長度,設(shè)挪動時間為t秒(1<t<10)。(1)求直線l2的分析式。2)設(shè)△PCQ的面積為S,懇求出S對于t的函數(shù)關(guān)系式。(3)嘗試究:當(dāng)t為什么值時,△PCQ為等腰三角形?(黃岡)已知:如圖,在直角梯形標(biāo)系,A,B,C三點(diǎn)的坐標(biāo)分別為BC的中點(diǎn),動點(diǎn)P從點(diǎn)O出發(fā),以每秒1個單位的速度,沿折線OABD的路線挪動,挪動的時間為t秒.(1)求直線BC的分析式;(2)若動點(diǎn)P在線段OA上挪動,當(dāng)t為什么值時,四邊形

COAB中,OC∥AB,以O(shè)為原點(diǎn)成立平面直角坐A(8,0),B(8,10),C(0,4),點(diǎn)D為線段OPDC的面積是梯形COAB面積的2?(3)動點(diǎn)P從點(diǎn)O出7發(fā),沿折線OABD的路線挪動過程中,設(shè)OPD的面積為S,請直接寫出S與t的函數(shù)關(guān)系式,并指出自變量t的取值范圍;(4)當(dāng)動點(diǎn)P在線段AB上挪動時,可否在線段OA上找到一點(diǎn)Q,使四邊形CQPD為矩形?懇求出此時動點(diǎn)P的坐標(biāo);若不可以,請說明原因.20.(仙桃)如圖,直角梯形OABC中,AB∥CD,O為坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,點(diǎn)C在x軸正半軸上,點(diǎn)B坐標(biāo)為(2,23),∠BCO=60°,OH⊥BC于點(diǎn)H.動點(diǎn)P從點(diǎn)H出發(fā),沿線段HO向點(diǎn)O運(yùn)動,動點(diǎn)Q從點(diǎn)O出發(fā),沿線段OA向點(diǎn)A運(yùn)動,兩點(diǎn)同時出發(fā),速度都為每秒1個單位長度.設(shè)點(diǎn)P運(yùn)動的時間為t秒.(1)求OH的長;(2)若OPQ的面積為S(平方單位).求S與t之間的函數(shù)關(guān)系式.并求t為什么值時,OPQ的面積最大,最大值是多少?(3)設(shè)PQ與OB交于點(diǎn)M.①當(dāng)OPM為等腰三角形時,求(2)中S的值.②研究線段OM長度的最大值是多少,直接寫出結(jié)論.解:(1)∵AB∥OC900∴OABAOC在RtOAB中,AB2,AO23∴OB4,ABO600∴BOC600而BCO600BOC為等邊三角形∴OHOBcos3004323(3分)2(2)∵OPOHPH23t∴xpOPcos30033ypOPsin3003tt22∴S1OQxp1t(33t)222=3t23t(0t23)(6分)42即S3(t3)23344t3S最大3374y3OPMiOMPMMPOMOPPOCABPQOCOQypt3tH2QMt23P3OCx3(23)232323S8432330yiiOPOMOPMOMP75OQP450ABPPEOAEEQEPQMHt1t)33t(3EP22t2OCxS3223233942iiiOPPMPOMPMOAOBPQOAQAB.10OM

32ABCBC=6SABC=12MNABACMNBCMNMPQNxMPQNABCyy>01ABCBCAD=2x=PQBC13PQABC2yxxxy1AD4········································22x2.412······································653BCMP,NQE,F(xiàn)MEFNMENFhADMNG2AGDNFhAG4hMNGBCEDFMN∥BC,AMN∽△ABC.MNAGx4hBCAD,即462x4.··························8分3yMNgNFx2x432x24x(2.4x6).····································10分32(x配方得:y3)26.···································11分3當(dāng)x3時,y有最大值,最大值是6.22.(宜昌)如圖1,已知四邊形OABC中的三個極點(diǎn)坐標(biāo)為O(0,0),A(0,n),C(m,0).動點(diǎn)P從點(diǎn)O出發(fā)挨次沿線段OA,AB,BC向點(diǎn)C挪動,設(shè)挪動行程為z,△OPC的面積S跟著z的變化而變化的圖象如圖2所示.m,n是常數(shù),m>1,n>0.(1)請你確立n的值和點(diǎn)B的坐標(biāo);(2)當(dāng)動點(diǎn)P是經(jīng)過點(diǎn)O,C的拋物線y=ax2+bx+c的極點(diǎn),且在雙曲線y=11上時,求這時四邊形OABC的面積.5x1.解:(1)從圖中可知,當(dāng)P從O向A運(yùn)動時,△POC的面積S=mz,z由0逐漸增2大到2,則S由0逐漸增大到m,故OA=2,n=2.(1分)同理,AB=1,故點(diǎn)B的坐標(biāo)是(1,2).(2分)(2)解法一:∵拋物線y=ax2+bx+c經(jīng)過點(diǎn)O(0,0),C(m,0),∴c=0,b=-am,(3分)2m1∴拋物線為y=ax-amx,極點(diǎn)坐標(biāo)為(2,-4am2).(4分)如圖1,設(shè)經(jīng)過點(diǎn)O,C,P的拋物線為l.當(dāng)P在OA上運(yùn)動時,O,P都在y軸上,y這時P,O,C三點(diǎn)不行能同在一條拋物線上,ABO1C

x∴這時拋物線l不存在,故不存在m的值..①當(dāng)點(diǎn)P與C重合時,雙曲線y=11不行能經(jīng)過P,5x故也不存在m的值.②(5分)(說明:①②任做對一處評1分,兩處全對也只評一分)當(dāng)P在AB上運(yùn)動時,即當(dāng)0<x0≤1時,y0=2,拋物線l的極點(diǎn)為P(m,2).2∵P在雙曲線y=11上,可得m=11,∵11>2,與x0=m≤1不合,舍去.(6分)5x552③簡單求得直線BC的分析式是:y2x2m,(7分)1m1m當(dāng)P在BC上運(yùn)動,設(shè)P的坐標(biāo)為(x0,y0),當(dāng)P是極點(diǎn)時x0=m,22m=m,極點(diǎn)P為(m,m2故得y=),01mx01mm12m1∵1<x0=m<m,∴m>2,又∵P在雙曲線y=11上,25x于是,m×m=11,化簡后得5m2-22m+22=0,2m15解得m122211,m222211,(8分)1010Q2112,2221120,m2222112,10與題意2<x0=m<m不合,舍去.④(9分)2故由①②③④,知足條件的只有一個值:m2221110.這時四邊形OABC的面積=1(1m)2=1611.25(襄樊)如圖15,四邊形OABC是矩形,OA=4,OC=8,,將矩形OABC沿直線AC折疊,使點(diǎn)B落在D處,AD交OC于E(.1)求OE的長;(2)求過O,D,C三點(diǎn)拋物線的分析式;(3)若F為過O,D,C三點(diǎn)拋物線的極點(diǎn),一動點(diǎn)P從點(diǎn)A出發(fā),沿射線長度的速度勻速運(yùn)動,當(dāng)運(yùn)動時間t(秒)為什么值時,直線PF把

AB以每秒1個單位FAC分紅面積之比為1:3的兩部分?解:(1)Q四邊形

OABC是矩形,CDE

AOE

90o,

OA

BC

CD

.·························(1分)又Q

CED

OEA,

△CDE≌△AOE

.························(2分)OE

DE.OE2

OA2

(AD

DE)2,即OE2

42

(8

OE)2,解之,得

OE

3.····················(3

分)(2)EC

83

5.如圖

4,過

D作DG

EC于G,DGE≌△CDE.··················(4分)DEDG,DEEG.DG12,EG9.ECCDECDE552412.····················(5分)D,5因O點(diǎn)為坐標(biāo)原點(diǎn),故可設(shè)過O,C,D三點(diǎn)拋物線的分析式為yax2bx.64a8b0,5a,2422412解之,得32a555b.5b.4y5x25x.···········································(7分)324(3)Q拋物線的對稱軸為x4,其極點(diǎn)坐標(biāo)為54,.28k,k1,設(shè)直線AC的分析式為ykx2b,則4.解之,得bb4.1x4.···········································(9分)2設(shè)直線FP交直線AC于H14,過H作HMOA于M.m,m2△AMH∽△AOC.HM:OCAH:AC.QS△FAH:S△FHC1:3或3:1,AH:HC

1:3

或3:1,

HM:OC

AH:AC

1:4或3:4.HM

2或6,即

m

2或6.H1(2,3),H2(6,1).···································(10分)直線FH1的分析式為y11x17.當(dāng)y4時,x18.4211直線FH2的分析式為y7x19.當(dāng)y4時,x54.1854427當(dāng)t秒或秒時,直線FP把△FAC分紅面積之比為1:3的兩部分11724.(蘭州)如圖19-1,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論