五年級邏輯推理_第1頁
五年級邏輯推理_第2頁
五年級邏輯推理_第3頁
五年級邏輯推理_第4頁
五年級邏輯推理_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

IMII掌握邏輯推理的解題思路與基本方法:列表、假設、對比分析法等培養(yǎng)學生的邏輯推理能力,掌握解不同題型的突破口能夠利用所學的數(shù)論等知識解復雜的邏輯推理題臣陲知識精講邏輯推理作為數(shù)學思維中重要的一部分,經(jīng)常出現(xiàn)在各種數(shù)學競賽中,除此以外,邏輯推理還經(jīng)常作為專項的內容出現(xiàn)在各類選拔考試,甚至是面向成年人的考試當中。對于學生學習數(shù)學來說,邏輯推理既有趣又可以開發(fā)智力,學生自主學習研究性比較高。本講我們主要從各個角度總結邏輯推理的解題方法.一列表推理法邏輯推理問題的顯著特點是層次多,條件縱橫交錯 ?如何從較繁雜的信息中選準突破口,層層剖析,一步步向結論靠近,是解決問題的關鍵?因此在推理過程中,我們也常常采用列表的方式,把錯綜復雜的約束條件用符號和圖形表示出來,這樣可以借助幾何直觀,把令人眼花繚亂的條件變得一目了然,答案也就容易找到了?二、假設推理用假設法解邏輯推理問題,就是根據(jù)題目的幾種可能情況,逐一假設?如果推出矛盾,那么假設不成立;如果推不出矛盾,而是符合題意,那么假設成立.解題突破口:找題目所給的矛盾點進行假設模塊一、列表推理法【例1】文U剛、馬輝、李強三個男孩各有一個妹妹,六個人進行乒乓球混合雙打比賽?事先規(guī)定:兄妹二人不許搭伴。第一盤:劉剛和小麗對李強和小英;第二盤:李強和小紅對劉剛和馬輝的妹妹. 問:三個男孩的妹妹分別是誰?【解析】因為兄妹二人不許搭伴,所以題目條件表明:劉剛與小麗、李強與小英、李強與小紅都不是兄妹.由第二盤看出,小紅不是馬輝的妹妹.將這些關系畫在左下表中,由左下表可得右下表.

XXX?XX?XXXNXX劉剛與小紅、馬輝與小英、李強與小麗分別是兄妹.【鞏固】王文、張貝、李麗分別是跳傘、田徑、游泳運動員,現(xiàn)在知道:⑴張貝從未上過天;⑵跳傘運動員已得過兩塊金牌;⑶李麗還未得過第一名,她與田徑運動員同年出生 ?請根據(jù)上述情況判斷王文、張貝、李麗各是什么運動員?【解析】為了能清楚地找到所給條件之間的關系, 我們不妨運用列表法,列出下表,在表中“J”表示是,〃x”表示不是,在任意一行或一列中,如果一格是〃「 ,可推出其它兩格是“X"王文張貝李麗跳傘VXX田徑X游泳V由⑴⑶可知張貝、李麗都不是跳傘運動員,可填出第一行,即王文是跳傘運動員;由⑶可知,李麗也不是田徑運動員,可填出第三列,即李麗是游泳運動員,則張貝是田徑運動員.【例2】張明、席輝和李剛在北京、上海和天津工作,他們的職業(yè)是工人、農(nóng)民和教師,已知:⑴張明不在北京工作,席輝不在上海工作;⑵在北京工作的不是教師;⑶在上海工作的是工人;⑷席輝不是農(nóng)民?問:這三人各住哪里?各是什么職業(yè)?【解析】這道題的關系要復雜一些,要求我們通過推理,弄清人物、工作地點、職業(yè)三者之間的關系?三者的關系需要兩兩構造三個表,即人物與地點,人物與職業(yè),地點與職業(yè)三個表.我們先將題目條件中所給出的關系用下面的表來表示, 由條件⑴得到表1,由條件⑵、⑶得到表2,由條件⑷得到表3?由條件⑷得到表3?表1 表2 表3因為各表中,每行每列只能有一個" ,所以表2可填全為表5.由表5知農(nóng)民在北京工作,又知席輝不是農(nóng)民,所以席輝不在北京工作,可以將表1可填全完為表4由表4和表5知得到:張明住在上海,是工人;席輝住在天津,是教師;李剛住在北京,是農(nóng)民。方法二:由題目條件可知:席輝不在上海工作,而在上海工作的是工人,所以席輝不是工人,又不是農(nóng)民,那么席輝只能是教師,不在北京工作,就只能是在天津工作,那么張明在上海工作,是工人。李剛在北京,是農(nóng)民.

北京上海天津工人農(nóng)民XVX張明VXXXXVXXVVXX李剛XVX【鞏固】甲、乙、丙三人,他們的籍貫分別是遼寧、廣西、山東,他們的職業(yè)分別是教師、工人、演員。已知:⑴甲不是遼寧人,乙不是廣西人;⑵遼寧人不是演員,廣西人是教師;⑶乙不是工人?求這三人各自的籍貫和職業(yè).1補1補將表3補全為表4?由表4知,工人是遼寧人,而乙不是工人,所以乙不是遼寧人,由此可將表全為表5。所以,甲是廣西人,職業(yè)是教師;乙是山東人,職業(yè)是演員;丙是遼寧人,職業(yè)是工人.方法二:將能判斷的條件先列入圖表中,廣西人是教師,但是乙不是廣西人,所以乙不是教師,乙又不是工人,所以乙為演員。在對應的地方打上“J” ,對應的行列均打“X".但是遼寧人不是演員,所以乙不是遼寧人,乙就是山東人,所以甲是廣西人,職業(yè)是教師;乙是山東人,職業(yè)是演員;丙是遼寧人,職業(yè)是工人.遼寧J%*;鞠幣工人演員XV4X甲VXXXXV乙XXVVXX內XVX【鞏固】小明、小芳、小花各愛好游泳、羽毛球、乒乓球中的一項,并分別在一小、二小、三小中的一所小學上學?,F(xiàn)知道:(1)小明不在一小;(2)小芳不在二?。?)愛好乒乓球的不在三小;(4)愛好游泳的在一??;(5)愛好游泳的不是小芳。問:三人上各愛好什么運動?各上哪所小學?【解析】這道題比上例復雜,因為要判斷人、學校和愛好三個內容。先將題目條件中給出的關系用下面的表1、表2、表3表示:表1表2表3 -小三小 二小|三小 步二三小

小明X游泳小芳X水芳X羽毛小花水花乒乓—球—因為各表中,每行每列只能有一個"J" ,所以表3可補全為表4。表4 表5一小二小一小二小小明XX小芳XX小花X由表4、表2知道,愛好游泳的在一小,小芳不愛游泳,所以小芳不在一小。于是可將表 1補全為表5。對照表5和表4,得到:小明在二小上學,愛好打乒乓球;小芳在三小上學,愛好打羽毛球;小花在一小上學,愛好游泳。【例3】甲、乙、丙、丁四個人的職業(yè)分別是教師、醫(yī)生、律師、警察?已知:⑴教師不知道甲的職業(yè);⑵醫(yī)生曾給乙治過?。虎锹蓭熓潜姆深檰枺ń?jīng)常見面) :⑷丁不是律師;⑸乙和丙從未見過TOC\o"1-5"\h\z面.那么甲、乙、丙、丁的職業(yè)依次是: ?【解析】律師、教師、警察?由⑶可以知道丙不是律師,但是他見過律師,再由⑸知乙不是律師,又由⑷可知甲是律師。于是由⑴和⑶知丙不是教師,由⑵和⑸知丙不是醫(yī)生,從而丙是警察.再由⑵知乙是教師,丁是醫(yī)生。列表如下(列表的好處在于直觀明了,不會犯錯誤)教師醫(yī)牛律師警察甲X⑴XVX乙VX⑵X⑸X丙 「X⑴⑶X⑵,⑸X⑶VTXVX⑷XTOC\o"1-5"\h\z【鞏固】甲、乙、丙、丁在談論他們及他們的同學何偉的居住地。甲說:“我和乙都住在北京,丙住在天津. ”乙說:“我和丁都住在上海,丙住在天津。 "丙說:“我和甲都不住在北京,何偉住在南京。 "丁說:“甲和乙都住在北京,我住在廣州。 ”假定他們每個人都說了兩句真話,一句假話?問:不在場的何偉住在哪兒?【解析】因為甲、乙都說“丙住在天津,”我們可以假設這句話是假話,那么甲、乙的前兩句應當都是真話,推出乙既住在北京又住在上海,矛盾?所以假設不成立,即“丙住在天津”是真話.因為甲的前兩句話中有一句假話,而甲、丁兩人的前兩句話相同,所以丁的第三句話“我住在廣州"是真的?由此知乙的第二句話“丁住在上?!笔羌僭?第一句“我住在上海"是真話;進而推知甲的第二句是假話,第一句“我住在北京”是真話;最后推知丙的第二句話是假話,第三句“何偉住在南京”是真話。所以,何偉住在南京.【例4】甲、乙、丙、丁每人只會中、英、法、日四種語言中的兩種,其中有一種語言只有一人會說?他們在一起交談可有趣啦:⑴乙不會說英語,當甲與丙交談時,卻請他當翻譯;⑵甲會日語,丁不會日語,但他們卻能相互交談;⑶乙、丙、丁找不到三人都會的語言;⑷沒有人同時會日、法兩種語言。請回:甲、乙、丙、丁各會哪兩種語言?【解析】由⑴⑵⑷可得下表,其中丙不會日語是因為甲會日語,且甲與丙交談需要翻譯?由下表看出,甲會的另一種語言不是中文就是英語?qX會的另一種語言不是中文就是英語?qXXqqXqXXqqXTqqXX再假設甲會說英語?由⑵知,丁也會英語;由⑴知丙不會英語,再由每人會兩種語言,知丙會中文和法語(見左下表);由⑴⑷推知,乙會中文和日語;再由⑶及每人會兩種語言,推知丁會由⑴⑷法語(見右下表)?右下表與“有一種語言只有一人會說"矛盾?假設不成立。所以甲會中、日語,所以甲會中、日語,33班【例5】 (2007年湖北省“創(chuàng)新杯”初賽)六年級四個班進行數(shù)學競賽,小明猜想比賽的結果是:第一名,2班第二名,1班第三名,4班第四名?小華猜想比賽的結果是: 2班第一名,4班第二名,3班第三名,1班第四名?結果只有小華猜到的4班為第二名是正確的?那么這次競賽的名次是 班第一名, 班第二名, 班第三名, 班第四名?!窘馕觥糠椒ㄒ唬阂李}意,3班不為第一名也不為第三名,那么 3班為第四名?同樣,2班不為第二名也不為第一名,那么2班為第三名。1班不為第三名也不為第四名,那么1班為第一名?故第一名到第四名依次為1班,4班,2班,3班。方法二:我們可以將兩人的猜測結果列成表格形式,將小明猜想結果用“▲”表示,小華猜測結果用“★”表示,列表如下:第一名第二名第三名第四名1班▲★2班★▲3班▲★4班★▲由題意知只有小華猜到的4班為第二名正確,其他的全是錯誤的,所以很容易確定各班名次(打J的即為正確的名次)4班▲方法二:題目中只有小華猜到4班為第二名是正確的,那么其他的猜想均為錯誤的。在其對應的地方打“X”,正確的則打“J” 。I第一名第二名第三名第四名1班VXXX2班XXVX3班XXXV4班XVXX【鞏固】甲、乙、丙、丁、戊五名同學參加推鉛球比賽,通過抽簽決定出賽順序.在未公布順序前每人都對出賽順序進行了猜測?甲猜:乙第三,丙第五?乙猜:戊第四,丁第五?丙猜:甲第一,戊第四?丁猜:丙第一,乙第二?戊猜:甲第三,丁第四?老師說每人的出賽順序都至少被一人所猜中,則出賽順序中,第一是__;第三是.【解析】題中每個人都猜了另外兩個人的出場順序,每個人的出場順序也都被另外兩個人猜過,其中戊被乙和丙猜的都是第四,由于每人的出賽順序都至少被一人所猜中,所以戊是第四(否則戊的出賽順序沒有人猜中),以此為突破口。由于戊是第四,則在第四列其余地方均打穴”則丁不能第四,所以丁的出賽順序被乙猜中,為第五,則丙不能是第五,丙只能是第一,甲不能是第一,故甲是第三,乙是第二,所以答案為:第一是丙,第三是甲。第一第二第三第四第五甲丙猜的XX戊猜的VXX乙X丁猜的V甲猜的XXX丙丁猜的VXXX甲猜的XTXXX戊猜的X乙猜的V戊XXX乙猜的,丙猜的VX【例6】紅、黃、藍、白、紫五種顏色的珠子各一顆, 分別用紙包著,在桌子上排成一行,有A、B、C、D、E五個人,猜各包珠子的顏色,每人只猜兩包.A猜:第二包是紫的,第三包是黃的; B猜:第二包是藍的,第四包是紅的;C猜:第一包是紅的,第五包是白的; D猜:第三包是藍的,第四包是白的;E猜:第二包是黃的,第五包是紫的.猜完后,打開各紙包一看發(fā)現(xiàn)每人都只猜對了一包,并且每包只有一人猜對。請你判斷他們各猜對了其中的哪一包?【解析】方法一:題目要求A、B、C、D、E五個人在猜每包珠子的顏色時每人只猜兩包且每人都只猜對了一包每包只有一人猜對,所以觀察五包珠子中第一包只有 C猜,所以C猜對了第一包,又根據(jù)每人只猜對了一種,所以C猜第五包是白的,猜錯了;第五包只有 C、E兩人猜,所以E猜第五包是紫的,猜對了;那么E猜第二包是黃的,猜錯了;紫顏色的珠子,只有A、E兩人猜,那么A猜第二包是紫的,猜錯了;第二包有 A,B,E三人猜,其中A,E都猜錯了,所以B猜第二包是藍的,猜對了;那么B猜第四包是紅的,猜錯了;所以 D猜對的是第四包,是白的。 D猜第三包是藍的,也猜錯了;所以 A猜對的是第三包,是黃的;總結以上推理判斷, A猜對了第三包是黃的, B猜對了第二包是藍的,C猜對了第一包是紅的,D猜對了第四包是白的, E猜對了第五包是紫的。方法二:分析同方法一,第一包只有一人猜對,所以第一包為紅色,在第一行的其余地方打上“X”第四包不為紅色,第四包為白色,白色不能為第五包,第五包就為紫色,同理可知其余各包顏色。紅色 黃色藍色白色紫色■一一VXXXXXXVXXXVXXX四XXXVX【鞏固】四張卡片上分別寫著奧、林、匹、克四個字(一張上寫一個字) ,取出三張字朝下放在桌上,B、C三人分別猜每張卡片上是什么字,猜的情況見下表:第一張第二張第三張A林奧克B林匹克C匹奧「林結果,有一人一張也沒猜中,一人猜中兩張,另一人猜中三張 ?問:這三張卡片上各寫著什么字.【解析】A、B有兩張猜的相同,必有一人全對,一人對兩張,因此, C全錯,推知B全對?【例7】老師讓小新把小胖、小貝、小丸子、小淘氣、小馬虎的作業(yè)本帶回去,小新見到這五人后就一人給了一本,結果全發(fā)錯了.現(xiàn)在知道:⑴小胖拿的不是小貝的,也不是小淘氣的;⑵小貝拿的不是小丸子的,也不是小淘氣的;⑶小丸子拿的不是小貝的,也不是小馬虎的;⑷小淘氣拿的不是小丸子的,也不是小馬虎的;⑸小馬虎拿的不是小淘氣的,也不是小胖的?另外,沒有兩人相互拿錯(例如小胖拿小貝的,小貝拿小胖的)?問:小丸子拿的是誰的本?小丸子的本被誰拿走了?【解析】根據(jù)“全發(fā)錯了”及條件⑴?⑸,可以得到下表:小胖的本小貝的本小丸子的本小淘氣的本小馬虎小胖XXX小貝XXX小丸子XXX小淘氣XXX小馬虎XXX由表1看出,小淘氣的本被小丸子拿了。此時,再繼續(xù)推理分析不大好下手,我們可用假設法。由上表知,小胖拿的本不是小丸子的就是小馬虎的。先假設小胖拿了小丸子的本。于是得到下表,表中小貝拿小馬虎的本,小馬虎拿小貝的本.兩人相互拿錯,不合題意.小胖的本小貝的本小丸子的本小淘氣的本小馬虎小胖IXXVXX小貝XXXXV小丸子XXXVX小淘氣VXXXX小馬虎:XVXXX再假設小胖拿小馬虎的本。于是又可得表,經(jīng)檢驗,下表符合題意.小胖的本小貝的本小丸子的本小淘氣的本小馬虎小胖XXXXV小貝VXXXX小丸子XXXVX小淘氣XVXXX小馬虎XXVXX所以小丸子拿了小淘氣的本,小丸子的本被小馬虎拿去了.模塊二、假設推理【例8】甲、乙、丙三人,一個總說謊,一個從不說謊,一個有時說謊?有一次談到他們的職業(yè)?甲說:“我是油漆匠,乙是鋼琴師,丙是建筑師?”乙說:“我是醫(yī)生,丙是警察,你如果問甲,甲

會說他是油漆匠?”丙說:“乙是鋼琴師,甲是建筑師,我是警察?"你知道誰總說謊嗎?【解析】甲?如果甲從不說謊,那么乙的最后一句、丙的第一句都對,沒有總說謊的人,矛盾;同理,女口果丙從不說謊,也將推出矛盾.【鞏固】在神話王國內,居民不是騎士就是騙子,騎士不說謊,騙子永遠說謊,有一天國王遇到該國的居民小白、小黑、小藍,小白說: “小藍是騎士,小黑是騙子.",小藍說:“小白和我不同,一個是騎士,一個是騙子?!眹鹾芸炫袛喑稣l是騎士,誰是騙子?你能判斷出嗎?【解析】假設小白是騎士(說實話),則小藍是騎士,小黑是騙子;又因為小藍是騎士,那么小白、小藍不同,一個是騎士,一個是騙子,與小白、小藍均為騎士矛盾?假設小白是騙子(說假話) ,那么小藍是騙子,小黑是騎士,又因為小藍是騙子,所以小白、小藍不同是假話?因此,小白、小藍是騙子,小黑是騎士【鞏固】甲說:“乙和丙都說謊。”乙說:“甲和丙都說謊?!北f:“甲和乙都說謊?!备鶕?jù)三人所說,你判斷一下,下面的結論哪一個正確: (1)三人都說謊;(2)三人都不說謊;(3)三人中只有一人說謊;(4)三人中只有一人不說謊?!窘馕觥浚?)正確.【例9】某地質學院的學生對一種礦石進行觀察和鑒別.甲判斷:不是鐵,也不是銅。乙判斷:不是鐵,而是錫。丙判斷:不是錫,而是鐵.經(jīng)化驗證明:有一個人的判斷完全正確,有一個人說對了一半,而另一個人完全說錯了.你知道三人中誰是對的,誰是錯的,誰是只對一半的嗎?【解析】丙全說對了,甲說對了一半,乙全說錯了。先假設甲全對,推出矛盾后,再設乙全對,又推出矛盾,則說明丙全對,甲說對了一半,乙全說錯了.【鞏固】三只小猴子聰聰、淘淘、皮皮見到一個水果,他們分別判斷這是什么水果:聰聰判斷:不是蘋果,也不是梨。淘淘判斷:不是蘋果,而是桃子.皮皮判斷:不是桃子,而是蘋果?老猴子告訴他們:有一只小猴子的判斷完全正確,有一只小猴子說對了一半,而另一只小猴子完全說錯了?你知道三只小猴中誰是對的,誰是錯的,誰是只對一半的嗎?【解析】先設聰聰全對,不是蘋果,也不是梨只能是桃子,那么淘淘兩句也都說對了,推出矛盾;再設淘淘全對,不是蘋果,而是桃子,推出這個水果是桃子,那么聰聰說的也都對了,又推出矛盾;則說明皮皮全對,那么這種水果是蘋果,聰聰說對了一半,淘淘全說錯了.【例10】(2007年太原福布斯迎奧運數(shù)學展示活動) 4名運動員參加一項比賽,賽前,甲說: “我肯定是最后一名?”乙說:“我不可能是第一名,也不可能是最后一名。 "丙說:“我絕對不會得最后一名?!倍≌f:“我肯定得第一名?!辟惡?,發(fā)現(xiàn)他們4人的預測中只有一人是錯誤的?請問誰的預測是錯誤的?【解析】假設甲的預測是錯的,那么其他三人的預測都是對的,那么甲不是最后一名,乙和丙也不是最后一名,丁是第一名,這樣的話沒有人是最后一名,矛盾?所以甲的預測是對的,甲是最后一名,那么丙的預測也是對的?如果乙的預測是錯的,那么乙是第一名,而丁的預測是對的,丁也是第一名,矛盾?所以乙的預測是對的,丁的預測是錯的。【鞏固】甲、乙、丙、丁在比較他們的身高,甲說: “我最高?"乙說:"我不最矮?”丙說:“我沒甲高,但還有人比我矮。"丁說:"我最矮?”實際測量的結果表明,只有一人說錯了?請將他們按身高次序從高到矮排列出來?!窘馕觥慷〔豢赡苷f錯,否則就沒有人最矮了?由此知乙沒有說錯?若甲也沒有說錯,則沒有人說錯,矛盾?所以只有甲一人說錯?所以丁是最矮的,甲不是最高的,丙沒甲高,但還有人比他矮,那么只能是甲第二高,丙第三高,乙最高?所以他們的身高次序為乙、甲、丙、丁.【鞏固】(2009年第七屆希望杯一試試題)百米決賽前,小芳對參賽的五名選手的名次作了預測,比賽的結果同她預測的名次全不相同?由下圖知小芳預測為第一名的選手的實際名次是第 名。的結果同她預測的名次全不相同?由下圖知小芳預測為第一名的選手的實際名次是第 名。我預測的第二名、第三名、第四名中有1人高出3個名次,有1人高出1個名次,另一人低1個名次。【解析】假設小芳預測第一名、第二名、第三名、第四名、第五名對應的人分別是甲、乙、丙、丁、戊,由小芳說的話知第四名丁就是實際名次的第一名 ,預測的第二名乙就是實際名次的第三名 ,預測的第三名丙就是實際名次的第二名,因此實際的第一名、第二名、第三名的人分別是丁、丙、乙,又知道比賽的結果同她預測的名次全不相同 ,所以小芳預測的第五名戊只能是實際的第四名了,這樣實際名次的第五名只能是小芳預測的第一名甲了 ?(如下表所述)第一名第二名第三名第四名第五名小芳預測名次對應的人甲乙丙:T戊實際名次對應的人T丙乙戊甲【鞏固】(2007年臺灣第一屆小學數(shù)學世界邀請賽)在期末考試前,學生 W、X、Y、Z分別預測他們的成績是A、B、C或D,評分標準是A比8好,B比C好,C比D好.W說:“我們的成績都將不相同。若我的成績得 A,則Y將得D?”X說:“若Y的成績得C,則W將得D.W的成績將比2好。"Y說:“若X的成績不是得到A,則W將得C.若我的成績得到B,則Z的成績將不是D.”Z說:“若Y的成績得到A,則我將得到B.若X的成績不是得到B,則我也將不會得到B?”當期末考試的成績公布,每位學生所得到的成績都完全符合他們的預測。請問這四位學生的成績分別是什么?【解析】由于每位學生所得到的成績都完全符合他們的預測, 所以X說:“W的成績將比Z好"是正確的,這樣W將不可能得D,Z不可能得A.這樣Y不可能得C(否則W得D).⑴如果W得A,那么Y將得D。由于X的成績不是得到A,那么W將得C,這與W得A矛盾。所以W不得A。⑵如果Y得A,那么Z將得到B.但這樣W的成績將不可能比2好,矛盾.所以Y不得A.⑶由于W、Y、Z均不得A,那么只有X得A.⑷如果Y得B,那么Z的成績將不是D.這樣Z的成績將是C,W的成績將是D,矛盾.所以Y不得B。由于Y不得A、B、C,所以Y得D。⑸由于W的成績比2好,所以剩下的B和C只能是W得B,Z得C。所以W、X、Y、Z的成績分別是B、A、D、C.【鞏固】(2008年第十二屆香港保良局小學數(shù)學世界邀請賽個人賽 )三位女孩A、B、C進行百米賽跑,裁判D、E、F在賽前猜測她們之間的名次。 D說:“我猜A是第一名。"E說:"我猜C不會是最后一名。"F說:“我猜B不會是第一名。”成績揭曉后已知恰只有一位裁判的猜測是正確的,請問哪位女孩得第一名?【鞏固】【解析】假設A是第一名,那么D猜測正確,F(xiàn)猜測正確,出現(xiàn)矛盾.假設B是第一名,那么D與F猜測錯誤,而當C為第二名時,E猜測正確。假設C為第一名,那么E、F猜測正確,出現(xiàn)矛盾,所以第一名是B.【鞏固】小強、小明、小勇三人參加數(shù)學競賽,他們分別來自甲、乙、丙三個學校,并分別獲得三等獎?已知:⑴小強不是甲校選手;⑵小明不是乙校選手;⑶甲校的選手不是一等獎;⑷乙校的選手得二等獎;⑸小明不是三等獎?根據(jù)上述情況,可判斷出小勇是 校的選手,他得的是_等獎。【解析】甲校;三等獎?由⑵、小明得的不是二等獎,由⑸知小明得的不是三等獎,所以小明得的是 -等獎,由⑶、⑷知小明是丙校的,由⑴知小強是乙校的,所以小勇是甲校的,他得的是三等獎.【例11】一位法官在審理一起盜竊案中,對涉及到的四名嫌疑犯甲、乙、丙、丁進行了審問?四人分別供述如下:甲說:“罪犯在乙、丙、丁三人之中。"乙說:“我沒有作案,是丙偷的?!北f:“在甲和丁中間有一人是罪犯?!倍≌f:“乙說的是事實?!苯?jīng)過充分的調查,證實這四人中有兩人說了真話,另外兩人說的是假話.同學們,請你做一名公正的法官,對此案進行裁決,確認誰是罪犯?【解析】如果甲說的是假話,那么剩下三人中有一人說的也是假話,另外兩人說的是真話.可是乙和丁兩人的觀點一致,所以在剩下的三人中只能是丙說了假話,乙和丁說的都是真話。即“丙是盜竊犯"?這樣一來,甲說的也是對的,不是假話?這樣,前后就產(chǎn)生了矛盾?所以甲說的不可能是假話,只能是真話?同理,剩下的三人中只能是丙說真話?乙和丁說的是假話,即丙不是罪犯,乙是罪犯?又由甲所述為真話,即甲不是罪犯?再由丙所述為真話,即丁是罪犯?所以乙和丁是盜竊犯。【鞏固】(2007年春武漢明心奧數(shù)挑戰(zhàn)賽) 5名謀殺案的嫌疑人,在犯罪現(xiàn)場被警察詢問,其中有一名是兇手.下面5個人的供述中,只有3句是對的:A說:D是殺人犯;B說:我是無辜的;C說:E不是殺人犯;D說:A在說謊;E說:B說的是實話。在這5個人中,是兇手.【解析】B與E判斷相同,要么都對,要么都錯。假設B與E都錯,即兇手是B,那么A也錯,就出現(xiàn)了3句錯的,與“有3句是對的"矛盾.所以B與E都是對的。余下的3人中還有1人判斷是對的,由于A與D互相矛盾,所以這兩個人中必有一個是對的,一個是錯的,由于只有3句是對的,那么C必定是錯的,所以E是兇手.【鞏固】甲,乙,丙,丁四個同學中有兩個同學在假日為街道做好事,班主任把這四人找來了解情況,四人分別回答如下?甲:“丙、丁兩人中有人做了好事.”乙:“丙做了好事,我沒做?!北骸凹?、丁中只有一人做了好事."丁:“乙說的是事實."最后通過仔細分析調查,發(fā)現(xiàn)四人中有兩人說的是事實,另兩人說的與事實有出入?到底是誰做了好事?【解析】我們用假設法來解決?題目說四人中有兩人說的是事實,另兩人說的與事實有出入?注意,此處的“與事實有出入”表示不完全與事實相符,比如,當乙、丙都做了好事,或乙、丙都沒做好事,或乙做了好事而丙沒做好事時,乙說的話都與事實有出入.因為乙與丁說的是一樣的,所以只有兩種可能,要么乙與丁正確,甲與丙錯;要么乙與丁錯,甲與丙正確.⑴假設乙與丁說的話正確.這時丙做了好事,甲說丙、丁兩人中有人做了好事,甲說的話也正確,這與題目條件只有“兩人說的是事實"相矛盾?所以假設錯誤.⑵假設甲與丙說的話正確.那么做好事的是甲與丙,或乙與丁,或丙與丁。若做好事的是甲與丙,或丙與丁,則乙說的話也正確,與題意不符;若做好事的是乙與丁,則乙說的話與事實不符,符合題意.綜上所述,做好事的是乙與丁?【例12】甲、乙、丙、丁四人同時參加全國小學數(shù)學夏令營。賽前甲、乙、丙分別做了預測.甲說: “丙第1名,我第3名。”乙說:“我第1名,丁第4名?!北f:“丁第2名,我第3名?!背煽兘視院?,發(fā)現(xiàn)他們每人只說對了一半,你能說出他們的名次嗎?【解析】我們以“他們每人只說對了一半”作為前提,進行邏輯推理。假設甲說的第一句話“丙第1名”是對的,第二句話“我第 3名”是錯的。由此推知乙說的“我第1名”是錯的,“丁第4名”是對的;丙說的“丁第2名”是錯的,“丙第3名”是對的。這與假設“丙第1名是對的”矛盾,所以假設不成立。再假設甲的第二句話“我第3名”是對的,那么丙說的第二句“我第 3名”是錯的,從而丙說的第一句話“丁第2名"是對的;由此推出乙說的“丁第 4名”是錯的,“我第1名"是對的。至此可以排出名次順序:乙第1名、丁第2名、甲第3名、丙第4名.【例13】傳說有個說謊國,這個國家的男人在星期四、五、六、日說真話,在星期一、二、三說假話;女人在星期一、二、三、日說真話,在星期四、五、六說假話?有一天,一個人到說謊國去旅游,他在那里認識了一男一女?男人說:“昨天我說的是假話”,女人說:“昨天也是我說假話的日子"?這下,那個外來的游人可發(fā)愁了,到底今天星期幾呢?請同學們根據(jù)他們說的話,判斷一下今天是星期幾呢?【解析】假設男人今天說的是真話,那么今天是星期四、五、六、日其中的一天,而且今天的前一天男人說的是假話,所以,根據(jù)男人的話,確定今天是星期四,所以女人說的話是假話,昨天也就是星期三女人說的是真話,符合題意,所以,今天是星期四【鞏固】從A,B,C,D,E,F(xiàn)六種產(chǎn)品中挑選出部分產(chǎn)品去參加博覽會。根據(jù)挑選規(guī)則,參展產(chǎn)品滿足下列要求:(1)A,B兩種產(chǎn)品中至少選一種; (2)A,D兩種產(chǎn)品不能同時入選;(3)A,E,F(xiàn)三種產(chǎn)品中要選兩種;(4)B,C兩種產(chǎn)品都入選或都不能入選; (5)C,D兩種產(chǎn)品中選一種;(6)若D種產(chǎn)品不入選,貝UE種也不能入選. 問:哪幾種產(chǎn)品被選中參展?【解析】用假設法。從條件(1)開始,有三種情況:假設選A不B選,由(2)知D不能入選,再由(5)知C入選,再由(4)推知C,B同時入選,與前面假設不選B矛盾。假設不成立.假設選B不選A,由(3)知選E,F,由(6)知D入選,再由(5)知C不入選,再由(4)推知B,C都不入選,與假設選B矛盾。假設不成立。假設A,B都入選,由⑵知D不入選,由(6)知E也不入選,再由(3)知F入選,由(4)知C入選。符合題意。因此, A,B,C,F(xiàn)選中參展?!纠?4】三年級一班新轉來三名學生,班主任問他們三人的年齡.劉強說:“我 12歲,比陳紅小2歲,比李麗大1歲.”陳紅說:“我不是年齡最小的,李麗和我差 3歲,李麗是15歲?!崩铥愓f:“我比劉強年歲小,劉強13歲,陳紅比劉強大3歲?!边@三位學生在他們每人說的三句話中,都有一句是錯的.請你幫助班主任分析出他們三人各是多少歲?【解析】經(jīng)過審題,仔細分析這九句話,不難發(fā)現(xiàn)有兩句話是相互矛盾的。一句話是劉強說的第一句話:“我12歲”,另一句話是李麗說的第二句話: “劉強13歲”.這兩句話不能都真,必有一句是假的。為了確定這兩句話的真假性。 可以先假設某一句為真, 如果推不出矛盾,本題就獲得了解決;如果推出矛盾,就說明這句話是假的,從而也就找到了突破口.先假設劉強說的第一句話“我 12歲”為真,那么李麗說的第二句話“劉強 13歲”就為假,因此李麗的另外兩句話就應該是真話,從“陳紅比劉強大3歲"就推出陳紅是15歲;又從“我比劉強年歲小"推出李麗小于 12歲.可是這樣一來,陳紅說的三句話中, “李麗和我差3歲”和“李麗15歲"這兩句話都不能成立,這與本題中的要求("每人說的三句話中,都有一句是錯的”,即三句話中有兩句話是真的)相矛盾.因此,劉強說的“我12歲"這句話是假的。由于劉強說的第一句話是假的,所以后兩句話就是真的?因此,李麗說的第三句話“陳紅比劉強大 3歲”就是假的,所以,李麗說的第二句話“劉強13歲”就是真的?于是就可以推出:李麗 12歲,陳紅15歲,劉強13歲?!纠?5】(2008年日本小學算術奧林匹克大賽決賽 )甲和乙做猜數(shù)的游戲。首先,甲在紙上寫1個各位數(shù)字都不同的四位數(shù),寫好后將紙翻過來。不讓乙看到,然后讓乙猜這個四位數(shù)的各位數(shù)字。如果數(shù)字和位數(shù)都猜對了就是O,如果數(shù)字對而位數(shù)不對就是例如:甲寫的是1234,乙猜的是1354,那么就是2個o,1個請閱讀以下對話并回答問題:乙:“我猜9856”,甲:“1個0, 1個A"乙:“6972?”,甲:“也是1個o,1個△.”乙:“3058?",甲:"也是1個0,1個”乙:“4732呢?",甲:“2個"乙:“哇,猜不著呀,8369呢?”甲:“也是2個”(1):請從以上的對話中答出甲最可能寫的 4個四位數(shù).后來,甲發(fā)現(xiàn)自己剛才的回答中對四位數(shù)的判斷有誤。甲:“對不起,剛才有搞錯的?!币遥骸鞍。∧敲瓷仙稀奔住爸皇?個數(shù)字搞錯了,在剛才說到的數(shù)字中,只是對4732的判斷有誤,正確的回答應該是1個O,1個△.”乙“稍等一會兒上上,??!我知道啦!甲寫的四位數(shù)是 嗎"?甲:“對啦!你真棒!"(2):請問甲寫的這個四位數(shù)是什么?【解析】如下表:猜測歡數(shù)所猜數(shù)字數(shù)字文寸且位數(shù)對數(shù)字對而位數(shù)不對11126972113305s1144733D283S5Q2由1、4次猜測結果知,2到9中包含了正確數(shù)字中的全部四位數(shù)字, 也即甲寫的數(shù)字各位都不是0或1;由2、3次猜測結果,同理知甲寫的數(shù)字各位都不是 1或4;再考察第3、4次猜測結果,由于其中的0和4一定是錯的,而且兩次各猜對了正確數(shù)字四位數(shù)中的兩位,可以先假設甲寫的數(shù)字各位上沒有3,那么甲寫的數(shù)字各位就是2、5、7、8,那么第5次猜測的結果就應該是(0,1)或者(1,0)而非(0,2)。因此甲寫的數(shù)字一定有一位是 3;再由第5次猜測結果,甲所寫的數(shù)字各位有且只有6、8、9中的一個;于是由第1次猜測結果,甲所寫的數(shù)字中一定有一位是5再綜合第3、5次猜測結果,知甲所寫的數(shù)字各位上沒有 8,而一定有且只有6、9其一根據(jù)第2次的猜測結果,甲所寫的數(shù)字應該有一位是 2、7其一。假定第1、3次猜測中位數(shù)對的數(shù)字是5,那么根據(jù)第3、5次的猜測結果可以判斷出3在甲所寫的數(shù)字的個位上于是由第2次猜測結果,2或7一定是數(shù)字對而位數(shù)不對的,那么 6或9一定是數(shù)字對且位數(shù)對的,于是甲可能寫的數(shù)字是:6253、2953或7953TOC\o"1-5"\h\z假定第1、3次猜測中位數(shù)對的數(shù)字不是5,那么第3次猜測中位數(shù)對的數(shù)字一定是 3,第1次猜測中位數(shù)對的數(shù)字只能是6而不能是9,于是只能第百位是5,十位是7,這時甲可能寫的數(shù)字只有3576綜上所述,甲可能寫的四位數(shù)是6253、2953、7953或3576(2)由上述前半部分推理,仍然能判斷出甲寫的數(shù)字各位上一定有 3和5,且仍然6、9中有其一,而2、7中有其一。仍然先假設第3次猜測中數(shù)字對且位數(shù)對的是 3,那么第1次猜測中數(shù)字對且位數(shù)對的只能是 6,^而不能是5或9。那么由于第1次猜測中5是數(shù)字對而位數(shù)不對的,則 5只能放在百位,又由于第2次猜測中有一位數(shù)字對且位數(shù)對,所以只能是十位上為 7,這時這個四位數(shù)是3576,但這時第4次猜測將沒有數(shù)字對且位數(shù)對的數(shù),與甲的敘述不附,因此最開始的假設不成立。那么第3次猜測中數(shù)字對且位數(shù)對的數(shù)只能是 5,由第3、5次猜測結果可以推知,3不在千位也不在百位,那么 3只能在個位.考慮到第四次猜測中要有一位數(shù)字對且位數(shù)對,只能是百位上的 7,再由第1次猜測的結果推出千位上不能是 9而只能是6,于是這個四位數(shù)是6753,經(jīng)過檢驗可知,這個四位數(shù)滿足所有五個條件,因此甲寫的四位數(shù)就是6753。【鞏固】一只皮箱的密碼是一個三位數(shù).小光說:“它是954。"小明說:“它是358。”小亮說:“它是214."小強說:“你們每人都只猜對了位置不同的一個數(shù)字."這只皮箱的密碼5、4”第一位肯定是9,【解析】每個人只猜了位置不同的一個數(shù)字,也就是說一樣的數(shù)字必然不對,第三位是85、4”第一位肯定是9,【例16】一次數(shù)學考試,共六道判斷題?考生認為正確的就畫"J" ,認為錯誤的就畫"X".記分的方法是:答對一題給2分;不答的給1分;答錯的不給分.已知A、B、C、D、E、F、G七人的答案及前六個人的得分記錄在表中,請在表中填出 G的得分.并簡單說明你的思路.考生題號ABCDEFG1VVVXXV2VXXVXX3VXVXXX4VVXXVV5VXVVXV6VVXXXX得分755597【解析】由于£得了9分,說明他只答錯了一道題。先假定答錯的是第 1題,這樣就有一個標準答案,并由此可分析其他人的得分.如出現(xiàn)矛盾,再假定E答錯的是第2題……直到判斷出E答錯的題號為止。有了正確的答案,就可以寫出 G的得分。假設E的第1題答錯,那么A至少錯3道題,一題未答,最多得5分,與A得7分矛盾。所以E第1題答對。假設E第2題答錯,可知A最多得3分,矛盾。所以E第2題答對。假設E第3題答錯,則B最多得3分,矛盾.所以E第3題答對。假設E第6題答錯,則D最多得3分,矛盾.所以E第6題答對.由于E得9分,因此E只答錯一題,因此E第4題答錯,于是A的第2,4兩題對,3,6兩題錯。而A得7分,說明A的第5題是對的。由A,E兩人的答案,可得一標準答案如下表:題號123456答案XVXVVX按此標準評分,與題中所給A,B,C,D,E,F得分相符合,所以E的第4題確實答錯了.上表的答案是正確的.故可知G 得 8 分 .【例17】有六個大小相同的彩球,三個紅,三個白,分別放入三個罐子里,一個罐里放兩紅球,一個罐里放兩白球,另一罐放一紅一白。然后將寫有“兩紅”、“兩白”、“紅白”的三個標簽貼在三個罐子上,由于粗心,三個標簽全貼錯了。試問此時最少要從罐子中取出幾個球,才能確定三個罐分別裝的是什么彩球?【解析】因為所有罐子上的標簽都和罐中實物不符,所以在貼有“紅白”標簽的罐子中只能是兩紅或兩白?那么只需在“紅白"罐子中取出一個彩球,若是紅色球,則可知罐中是兩紅,那么標有“兩白”的罐子中就是“一紅一白”,標有“兩紅”的罐子中就是“兩白" ;若是白色球,則可知罐中是“兩白”,那么標有“兩紅”的罐子中就是“一紅一白”,而標有“兩白"的罐子中就是“兩紅”?模塊四、計算中的邏輯推理【例18】學校組織了一次投籃比賽,規(guī)定投進一球得 3分,投不進倒扣1分,如果大明得30分,且知他有6個球沒有投進,那么大明共投了幾個球?【解析】大明有6個球沒有投進,要被扣掉6分,如果不考慮這6個球,大明應該得30?6=36(分),規(guī)定投進一球得3分,36—:—3=12(個),所以,大明投進了12個球,加上未投進的6個球,大明共投了12?6=18個球?!纠?9】小華在一個文具店里買了5支鉛筆,4塊橡皮,8個練習本,付給售貨員2元錢,售貨員叔叔找給他5角5分?小華看了看鉛筆的價格是每支 8分,就說:“叔叔,您把帳算錯啦!”請問:小華怎么知道這筆帳算錯了?【解析】因為每支鉛筆的價格是8分,所以5支鉛筆的價錢是85=40(分),40是4的倍數(shù);4塊橡皮和8個筆記本,不管它們各自的單價是多少,總共應付的錢也是 4的倍數(shù)?但是小華給了售貨員 2元錢,找回5角5分,實際付給售貨員1元4角5分,因為145(分)不是4的倍數(shù),所以小華斷定售貨員把這筆帳算錯了?!纠?0】張紅因病在家休息了幾天,這期間的氣候是:⑴下了 8次雨,時間是上午或下午;⑵當下午下雨時,當天上午是晴天;⑶有 9個下午是晴天;⑷有13個上午是晴天。問她一共在家休息了幾天?【解析】因為(2)當下午下雨時,當天上午恰好是晴天,如果上午下雨,下午也必定是晴天因此每天只可能上午或者下午下雨。設他休息了X天,(X-9)為下午下雨的次數(shù),(X—13)為上午下雨的次數(shù)(X-9)+(X—13)=8,2X=30,X=15,休息了15天【例21】五號樓住著四個女孩和兩個男孩,他們的年齡各不相同,最大的 10歲,最小的4歲,最大的女孩比最小的男孩大4歲,最大的男孩比最小的女孩也大 4歲,求最大的男孩的歲數(shù).【解析】假設最小的男孩4歲,那么最大的女孩有4?4=8(歲),四個女孩年齡都不同,最小的女孩應是5歲,那么最大的男孩為5?4=9(歲),與題目說最大的孩子10歲矛盾?所以假設不成立?再假設最小的女孩4歲,那么最大的男孩為4?4=8歲,最大的女孩10歲,最小的男孩10—4=6歲,符合題意?所以最大男孩是8歲。【例22】四對夫婦坐在一起閑談.四個女人中, A吃了3個梨,B吃了2個,C吃了4個,D吃了1個;四個男人中,甲吃的梨和他妻子一樣多,乙吃的是妻子的 2倍,丙吃的是妻子的3倍,丁吃的是妻子的4倍?四對夫婦共吃了32個梨?問:丙的妻子是誰?【解析】分別設A,B,C,D的丈夫吃梨的個數(shù)為3a,2b,4c和d,則有:3a2b4cd=32-(3 241)=22由題意知,a,b,C,d分別等于1,2,3,4四個數(shù)之一,且互不相同?所以abCd=10,得到2ab3-12.所以b與C的奇偶性相同.由于2ab=aab_a1,2_11*2=4,所以3/8,C只能為1或2?如果c=1,那么b=3,由2ab3c=12得到a=3,矛盾?所以c=2,b=4,a=1,d=3?因為丙吃的梨是妻子的3倍,而d=3,所以丙的妻子是D? 課后練習 練習1。A,B,C,D分別是中國、日本、美國和法國人 ?已知:⑴A和中國人是醫(yī)生;⑵B和法國人是教師;⑶C和日本人職業(yè)不同;⑷D不會看病?問:A,B,C,D各是哪國人,【解析】有⑴⑵可知,A、B都不是中國人和法國人, 再由⑴⑷知,D也不是中國人,所以,C是中國人,由⑶,日本人也是教師,從而推知, D是法國人,得下表:,中國人日本人美國人.法國人AXXBXXCVXXXDXXXV最后由C是中國人及⑴⑶,推知日本人是教師,再由⑵知 8是日本人。練習2。班里舉行投籃比賽,規(guī)定投中一個球得 5分,投不進扣2分?小立一共投了6個球,得了16分,那么小立投中了幾個球?【解析】如果小立6個球全部投中,應該得65=30(分),實際上少了30—16=14(分),投中一個球得5分,投不進扣2分,投不進一個球就少5,2=7(分),所以一共沒投進14“7=2(個),投中了6-2=4(個)球。練習3。學校新來了一位老師,五個學生分別聽到如下的情況:⑴是一位姓王的中年女老師,教語文課;⑵是一位姓丁的中年男老師,教數(shù)學課;⑶是一位姓劉的青年男老師,教外語課;⑷是一位姓李的青年男老師,教數(shù)學課;⑸是一位姓王的老年男老師,教外語課?他們每人聽到的四項情況中各有一項正確?問:真實情況如何?【解析】真實情況是姓劉的老年女老師,教數(shù)學?假設是男老師,由⑵、⑶、⑸知,他既不是青年、中年,也不是老年,矛盾,所以是女老師?再由⑴知,她不教語文,不是中年人?假設她教

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論