![算法設(shè)計(jì)與分析chap8(dynamic programming2014)_第1頁](http://file4.renrendoc.com/view/835fc9d8cb5650d64575cda41c09e4eb/835fc9d8cb5650d64575cda41c09e4eb1.gif)
![算法設(shè)計(jì)與分析chap8(dynamic programming2014)_第2頁](http://file4.renrendoc.com/view/835fc9d8cb5650d64575cda41c09e4eb/835fc9d8cb5650d64575cda41c09e4eb2.gif)
![算法設(shè)計(jì)與分析chap8(dynamic programming2014)_第3頁](http://file4.renrendoc.com/view/835fc9d8cb5650d64575cda41c09e4eb/835fc9d8cb5650d64575cda41c09e4eb3.gif)
![算法設(shè)計(jì)與分析chap8(dynamic programming2014)_第4頁](http://file4.renrendoc.com/view/835fc9d8cb5650d64575cda41c09e4eb/835fc9d8cb5650d64575cda41c09e4eb4.gif)
![算法設(shè)計(jì)與分析chap8(dynamic programming2014)_第5頁](http://file4.renrendoc.com/view/835fc9d8cb5650d64575cda41c09e4eb/835fc9d8cb5650d64575cda41c09e4eb5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023/9/23zhengjin,CentralSouthUniversity1DynamicProgramming2023/9/23zhengjin,CentralSouthUniversity22023/9/232DynamicProgramming
動(dòng)態(tài)規(guī)劃(dynamicprogramming)是運(yùn)籌學(xué)的一個(gè)分支,是求解決策過程(decisionprocess)最優(yōu)化的數(shù)學(xué)方法。20世紀(jì)50年代初美國數(shù)學(xué)家R.E.Bellman等人提出了著名的最優(yōu)化原理(principleofoptimality),把多階段過程轉(zhuǎn)化為一系列單階段問題,利用各階段之間的關(guān)系,逐個(gè)求解,創(chuàng)立了解決這類過程優(yōu)化問題的新方法——?jiǎng)討B(tài)規(guī)劃。動(dòng)態(tài)規(guī)劃問世以來,在經(jīng)濟(jì)管理、生產(chǎn)調(diào)度、工程技術(shù)和最優(yōu)控制等方面得到了廣泛的應(yīng)用。例如最短路線、庫存管理、資源分配、設(shè)備更新、排序、裝載等問題。
動(dòng)態(tài)規(guī)劃動(dòng)態(tài)規(guī)劃比分治法進(jìn)出的更早,那時(shí)還沒有計(jì)算機(jī),比計(jì)算機(jī)科學(xué)更早,主要用于運(yùn)籌學(xué)。從子問題開始做(小問題),小問題解決了,則大問題就能解決(利用小問題和大問題之間的遞推關(guān)系)分治法也是把大問題劃分成子問題,分治法邏輯清晰,但需要子問題不重疊(或重疊少)。動(dòng)態(tài)規(guī)劃是屬于枚舉方法(把所有的子問題都解決),唯一亮點(diǎn)就是把子問題的解記下來(存儲(chǔ)),需要時(shí)讀取(調(diào)用).因此需占用空間。因此要特別考慮空間的占用。分治法與動(dòng)態(tài)規(guī)劃如果子問題獨(dú)立,則用分治法比較好。例如,歸并排序如果子問題重疊多,則用動(dòng)態(tài)規(guī)劃比較好。例如:多段圖問題如果子問題獨(dú)立,則用分治法比較好。例如,歸并排序如果子問題獨(dú)立,則用分治法比較好。例如,歸并排序如果子問題獨(dú)立,則用分治法比較好。例如,歸并排序如果子問題重疊多,則用動(dòng)態(tài)規(guī)劃比較好。例如:多段圖問題2023/9/23zhengjin,CentralSouthUniversity5Example:Fibonaccinumbers
RecalldefinitionofFibonaccinumbers:f(0)=0f(1)=1f(n)=f(n-1)+f(n-2)ComputingthenthFibonaccinumberrecursively(Top-Down):
f(n)
f(n-1)+f(n-2)f(n-2)+f(n-3)f(n-3)+f(n-4)...2023/9/23zhengjin,CentralSouthUniversity6Top-Down(分治形式:大量重疊現(xiàn)象)F(n){if(n<=1)return1;elsereturnF(n-1)+F(n-2);
}F6F4F5F2F1F0F3F1F2F0F1F3F1F2F0F1F4F3F1F2F0F1F2F1F02023/9/23zhengjin,CentralSouthUniversity7Example:Fibonaccinumbers(自底向上)
Computingthenthfibonaccinumberusingbottom-upiteration:
f(0)=0f(1)=1f(2)=0+1=1f(3)=1+1=2f(4)=1+2=3f(5)=2+3=5…
f(n-2)=f(n-1)=f(n)=f(n-1)+f(n-2)ALGORITHMFib(n)f[0]0,f[1]1fori2tondo
f[i]f[i-1]+f[i-2]returnf[n]extraspace空間換取時(shí)間(時(shí)空權(quán)衡)遞歸算法效率低的主要原因是因?yàn)檫M(jìn)行了大量的重復(fù)計(jì)算。而動(dòng)態(tài)規(guī)劃的基本動(dòng)機(jī)就是充分利用重疊子問題(Overlappingsubproblems)。因?yàn)閯?dòng)態(tài)規(guī)劃將以前(子問題)計(jì)算過的結(jié)果都記錄下來,遇到使用子問題結(jié)果的時(shí)候只需查表。動(dòng)態(tài)規(guī)劃是一種用空間換取時(shí)間的方法。動(dòng)態(tài)規(guī)劃常常因?yàn)榭臻g消耗太大而難以實(shí)現(xiàn)。2023/9/23zhengjin,CentralSouthUniversity9Fibonacci(n){if(n<=1)return1last=1nextlast=1fori=2tondoanswer=last+nextlast
nextlast=last
last=answerreturnanswer}此問題中,由于該算法只用到最近的兩個(gè)子問題的解,因此,只用兩個(gè)變量存儲(chǔ)子問題的解2023/9/23zhengjin,CentralSouthUniversity10ExamplesofDynamicProgrammingAlgorithms1.MultistageGraphproblem(多段圖問題)2.Floyd’salgorithmsforall-pairsshortestpaths3.Investmentprofitproblem4.LongestpathinDAG(最長路徑問題)5.Editdistance6.Knapsack(背包問題)7.Constructinganoptimalbinarysearchtree(最優(yōu)二分檢索樹)
2023/9/23zhengjin,CentralSouthUniversity111.MultistageGraphproblem(多段圖問題)
/k/433/practice/5.htm2023/9/23zhengjin,CentralSouthUniversity12COST(4,9)=4,COST(4,10)=2,COST(4,11)=5COST(3,6)=min{6+COST(4,9),5+COST(4,10)}=7COST(3,7)=min{4+COST(4,9),3+COST(4,10)}=5COST(3,8)=7COST(2,2)=min{4十COST(3,6),2+COST(3,7),1+COST(3,8)}=7COST(2,3)=9COST(2,4)=18COST(2,5)=15COST(1,1)=min{9+COST(2,2),7+COST(2,3),3+COST(2,4),2+COST(2,5)}=162023/9/23zhengjin,CentralSouthUniversity13最優(yōu)子結(jié)構(gòu)性質(zhì)最優(yōu)子結(jié)構(gòu)性質(zhì):問題的最優(yōu)解包含子問題的最優(yōu)解2023/9/23zhengjin,CentralSouthUniversity14123456最優(yōu)子結(jié)構(gòu)性質(zhì):214134431246214原問題的最優(yōu)解12342141包含子問題的最優(yōu)解2023/9/23zhengjin,CentralSouthUniversity15AssemblyLineOptimalScheduling(裝配線最優(yōu)調(diào)度)2023/9/23zhengjin,CentralSouthUniversity16
f*=min(f1[n]+x1,f2[n]+x2);2023/9/23zhengjin,CentralSouthUniversity172.Floyd’sAlgorithm:Allpairsshortestpaths(所有點(diǎn)對(duì)之間的最短路徑)
Allpairsshortestpathsproblem:
Inaweightedgraph,findshortestpathsbetweeneverypairofvertices.Applicableto:undirectedanddirectedweightedgraphs;nonegativeweight.Example:34214161530410630
51004104306510weightmatrixdistancematrixdij(k)
=lengthoftheshortestpathfromitojwitheachvertexnumberednohigherthank.2023/9/23zhengjin,CentralSouthUniversity18距離矩陣Dij0410630
51034214161530410530
510041053065100410430651004105306510節(jié)點(diǎn)間的路徑不包含內(nèi)部節(jié)點(diǎn)允許含節(jié)點(diǎn)1的最短路徑值允許含節(jié)點(diǎn)1,2的最短路徑值允許含節(jié)點(diǎn)1,2,3的最短路徑值允許含節(jié)點(diǎn)1,2,3,4的最短路徑值2023/9/23zhengjin,CentralSouthUniversity19Floyd’sAlgorithmD(k):allow1,2,…,ktobeintermediatevertices.Inthekth
stage:
determinewhethertheintroductionofkasanewintermediatevertexwillbringaboutashorterpathfromitoj.
dij(k)=min{dij(k-1),dik(k-1)+dkj(k-1)}fork
1,dij(0)=wijijkkthstagedij(k-1)dik(k-1)dkj(k-1)2023/9/23zhengjin,CentralSouthUniversity20Floyd’sAlgorithm
DW//isnotnecessaryifWcanbeoverwritten
fork1tondo for
i1ton
do
for
j1tondo
D[i,j]min{D[i,j],D[i,k]+D[k,j]}
return
D
Timeefficiency:O(n3)
2023/9/23zhengjin,CentralSouthUniversity21GeneralComments
Thecrucialstepindesigningadynamicprogrammingalgorithm:Derivingarecurrencerelatingasolutiontotheproblem’scurrentinstancewithsolutionsofitssmaller(andoverlapping)instances.2023/9/23zhengjin,CentralSouthUniversity222023/9/23223.LongestpathinDAG
(有向加權(quán)圖中的最長路徑)Problem:GivenaweighteddirectedacyclicgraphG=(V,E),anvertexv,whereeachedgeisassignedanintegerweight,findalongestpathingraphG.2023/9/23zhengjin,CentralSouthUniversity232023/9/2323LongestpathinDAGdilg(V):thelongestpathendingwithV.dilg(D),dilg(B),dilg(C)dilg(D)=max{dilg(B)+1,dilg(C)+3}Foranyvertexv,dilg(v)=max(u,v)∈E{dilg(u)+w(u,v)}2023/9/23zhengjin,CentralSouthUniversity242023/9/2324LongestpathinDAGDplongestpath(G)Initializealldilg(.)valuesto0;LetSbethesetofverticeswithindegree=0;(從入度為0的節(jié)點(diǎn)開始算)3.Foreachv∈V-SinTopologicalSortingorderdo(拓?fù)渑判虻捻樞驅(qū)λ泄?jié)點(diǎn)進(jìn)行計(jì)算與處理)
dilg(v)=max(u,v)∈E{dilg(u)+w(u,v)}4.Returnthedilg(.)withmaximumvalue.2023/9/23zhengjin,CentralSouthUniversity2525LongestpathinDAGThealgorithmonlygetthevalueofthelongestpath.Problem:Howtofindsuchpath?Dplongestpath(G)Initializealldilg(.)valuesto0;LetSbethesetofverticeswithindegree=0;Foreachv∈V-SinTopologicalSortingorderdo
dilg(v)=max(u,v)∈E{dilg(u)+w(u,v)4.Returnthedilg(.)withmaximumvalue.2023/9/23zhengjin,CentralSouthUniversity2626LongestpathinDAGDplongestpath(G)Initializealldilg(.)valuesto0;LetSbethesetofverticeswithindegree=0;Foreachv∈V-SinTopologicalSortingorderdo
dilg(v)=max(u,v)∈E{dilg(u)+w(u,v)}let(u,v)betheedgetogetthemaximumvalue;
dad(v)=u;//使dilg(v)達(dá)到最大的那個(gè)節(jié)點(diǎn)u,即為v的父節(jié)點(diǎn)
5.Returnthedilg(.)withmaximumvalue.2023/9/23zhengjin,CentralSouthUniversity272023/9/23274.EditDistance(比對(duì))
/developerworks/cn/java/j-seqalign/Thedistancebetweenstrings:alignment(比對(duì))Alignment:awayofwritingthestringsoneabovetheother.
The“-”indicatesa“gap”;(-表示空格)anynumberofthesegapcanbeplacedineitherstring(串中任何地方都可以插入空格).為什么比對(duì)中可以插入空格?比對(duì)主要用于評(píng)價(jià)兩個(gè)串的差別有多大,在生物計(jì)算中,看DNA串有多象,如親子簽定),生物物種不一樣,DNA差別很大,同種的則比較象)ACTACTGGTTCACTA
CTGGTT
這兩個(gè)串,如果一一比對(duì),匹配的很少.但很可能上面少測(cè)了一位,或下面多測(cè)了一位!而實(shí)際上,二者很象,就錯(cuò)了一位。(如果在上面左測(cè)插入一個(gè)空格,則二者相似性很高),所以,允許插入空格.(直觀也是這二者很象!)。-ACTACTGGTTCACTA
CTGGTT基因組數(shù)據(jù)庫保存了海量的原始數(shù)據(jù)。人類基因本身就有接近30億個(gè)DNA堿基對(duì)。為了查遍所有數(shù)據(jù)并找到其中有意義的關(guān)系,分子生物學(xué)家們?cè)絹碓揭蕾囉诟咝У挠?jì)算機(jī)科學(xué)字符串算法。基因資料—DNA和RNA—鏈?zhǔn)欠Q為核苷酸的小單元組成的序列。為了回答某些重要的研究問題,研究人員把基因串看作計(jì)算機(jī)科學(xué)的字符串—也就是說,可以忽略基因串的物理和化學(xué)性質(zhì),而將其想像成字符的序列。注:更多內(nèi)容,請(qǐng)自已上網(wǎng)查詢2023/9/23zhengjin,CentralSouthUniversity302023/9/2330EditDistance(mismatch的位數(shù))Thecostofanalignmentisthenumberofcolumnsinwhichthelettersdiffer.Cost:3Cost:5The
editdistancebetweentwostringsisthecostoftheirbestpossiblealignment(最好的比對(duì)中mismatch位數(shù)最小的)2023/9/23zhengjin,CentralSouthUniversity312023/9/2331EditDistanceProblem:Giventwostrings,howtogettheeditdistance?Strategy1:getallpossiblealignmentsbetweentwostrings;searchthroughallofthemforthebestone.Strategy2:
Dynamicprogramming2023/9/23zhengjin,CentralSouthUniversity322023/9/2332EditDistanceDynamicProgrammingforEditDistanceGiventwostringsx[1..m],y[1..n],findtheEditDistancebetweenxandy:E(m,n).Whatarethesubproblems?Howabouttheeditdistancebetweensomeprefixofstrings(字符串前綴):EXPONENTIALPOLYNOMIALx[1..i],y[1..j]
subproblemE(i,j)2023/9/23zhengjin,CentralSouthUniversity332023/9/2333EditDistanceSubproblemE(7,5)
subproblemE(i,j):expressE(i,j)intermsofsmallersubproblems2023/9/23zhengjin,CentralSouthUniversity342023/9/2334EditDistance
subproblemE(i,j):expressE(i,j)intermsofsmallersubproblemsWhatdoweknowaboutthebestalignmentbetweenx[1..i],y[1..j]?rightmostcolumn(最右邊那列有4種比對(duì)可能)2023/9/23zhengjin,CentralSouthUniversity352023/9/2335EditDistancerightmostcolumnE(i,j)E(i-1,j)E(i,j)=1+E(i-1,j)RelationshipE(i,j)E(i,j-1)E(i,j)=1+E(i,j-1)RelationshipE(i,j)E(i-1,j-1)E(i,j)=1/0+E(i-1,j-1)Relationship2023/9/23zhengjin,CentralSouthUniversity362023/9/2336EditDistance(遞推關(guān)系式)Ifx[i]=x[j]thendiff(i,j)=0,otherwisediff(i,j)=1.E(0,j)=j.E(i,0)=i.2023/9/23zhengjin,CentralSouthUniversity372023/9/2337EditDistanceTheanswerstoallthesubproblemsE(i,j)formatwo-dimensionaltable(用二維表格記錄所有子問題的最優(yōu)解).2023/9/23zhengjin,CentralSouthUniversity382023/9/2338EditDistanceEditdistanceofEXPONENTIALandPOLYNOMIAL2023/9/23zhengjin,CentralSouthUniversity392023/9/2339EditDistanceDPEditDis(x[1..m],y[1..n])Fori=0tomdo
E(i,0)=i;2.Forj=1tondoE(0,j)=j;//初始化3.Fori=1tomdo//以行序計(jì)算forj=1tondo
E(i,j)=min{E(i-1,j)+1,E(i,j-1)+1,E(i-1,j-1)+diff(i,j)}4.ReturnE(m,n).Runningtime:O(mn)2023/9/23zhengjin,CentralSouthUniversity402023/9/2340EditDistanceEditdistanceofEXPONENTIALandPOLYNOMIAL2023/9/23zhengjin,CentralSouthUniversity412023/9/2341EditDistanceUnderlyingDAGforEXPONENTIALandPOLYNOMIAL2023/9/23zhengjin,CentralSouthUniversity422023/9/2342ThefindingofsubproblemsisanimportantstepinDynamicprogramming.Subproblemschoosing(子問題的選取方法)Commonlyusedmethods:Theinputisx1,x2,…,xn.asubproblemisx1,x2,…,xi.Howmanysubproblemsforthiscase?O(n)2023/9/23zhengjin,CentralSouthUniversity432023/9/2343Subproblemschoosing(子問題的選取方法)2.Theinputisx1,x2,…,xn,andy1,y2,…,ym.asubproblemisx1,x2,…,xiandy1,…,yj.Howmanysubproblemsforthiscase?O(mn)2023/9/23zhengjin,CentralSouthUniversity442023/9/2344Subproblemschoosing(子問題的選取方法)3.Theinputisx1,x2,…,xn.asubproblemisxi,xi+1,…,xj.Howmanysubproblemsforthiscase?O(n2)2023/9/23zhengjin,CentralSouthUniversity455.Knapsack(背包問題)Duringarobbery,aburglarfindsmuchmorelootthanhehadexpectedandhastodecidewhattotake.2023/9/23zhengjin,CentralSouthUniversity462023/9/2346KnapsackHisbag(or.knapsack.)willholdatotalweightofatmostWpounds.Therearenitemstopickfrom,ofweightw1,…,wnandvaluev1,…,vn.What'sthemostvaluablecombinationofitemshecanfitintohisbag?2023/9/23zhengjin,CentralSouthUniversity472023/9/2347KnapsackTwoversionsoftheproblemeachitem:unlimitedquantityeachitem:onlyoneKnapsackwithrepetitionKnapsackwithoutrepetitionW=102023/9/23zhengjin,CentralSouthUniversity482023/9/2348Knapsackwithoutrepetition(沒有重復(fù)的背包問題:每種物品都只有一件)Whatarethesubproblems?smallerknapsackcapacitiesw≤Wfeweritems(forinstance,items1,2,…,j,forj≤n).K(j,w)=maximumvalueachievableusingaknapsackofcapacitywanditems1,…,j.2023/9/23zhengjin,CentralSouthUniversity492023/9/2349Knapsackwithoutrepetition
Whatarethesubproblems?
K(i,w)=maximumvalueachievableusingaknapsackofcapacitywanditems1,…,i.
K(n,W)istheanswer.Howtogetsubproblem
K(i,w)intermsofsmallersubproblems?K(i,w)=max{K(i-1,w-wi)+vi,K(i-1,w)}w≥wiK(i,0)=0,K(0,w)=0.w<wiK(i,w)=K(i-1,w)
這個(gè)方程非常重要,基本上所有跟背包相關(guān)的問題的方程都是由它衍生出來的。“將前i件物品放入重量為w的背包中”這個(gè)子問題的含義:若只考慮第i件物品的策略(放或不放),那么就可以轉(zhuǎn)化為一個(gè)只牽扯前i-1件物品的問題。如果不放第i件物品,那么問題就轉(zhuǎn)化為“前i-1件物品放入容量為w的背包中”,價(jià)值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)業(yè)機(jī)械租賃合同范本
- 2025年度健身俱樂部健身器材采購與售后服務(wù)合同
- 2025年水冷固定式空氣壓縮機(jī)項(xiàng)目投資可行性研究分析報(bào)告-20241226-174828
- 2025年度工業(yè)管道系統(tǒng)管件定制采購合同
- 求職申請(qǐng)書工作
- 2025年度智能空調(diào)系統(tǒng)定制開發(fā)合同范本
- 2025年度建筑行業(yè)市場調(diào)研居間服務(wù)協(xié)議
- 挖泥船項(xiàng)目建議書寫作參考范文
- 2025年度國際廣告代理服務(wù)合同范本
- 無紡布防潮罩行業(yè)深度研究報(bào)告
- 通用稅務(wù)自查情況說明報(bào)告(7篇)
- 現(xiàn)澆箱梁施工危險(xiǎn)源辨識(shí)與分析
- 2023外貿(mào)業(yè)務(wù)協(xié)調(diào)期中試卷
- GB/T 16475-1996變形鋁及鋁合金狀態(tài)代號(hào)
- GB 4706.20-2004家用和類似用途電器的安全滾筒式干衣機(jī)的特殊要求
- 無紙化會(huì)議系統(tǒng)解決方案
- 佛教空性與緣起課件
- 上海鐵路局勞動(dòng)安全“八防”考試題庫(含答案)
- 《愿望的實(shí)現(xiàn)》教學(xué)設(shè)計(jì)
- 效率提升和品質(zhì)改善方案
- 義務(wù)教育學(xué)科作業(yè)設(shè)計(jì)與管理指南
評(píng)論
0/150
提交評(píng)論