硅負極材料的相關(guān)應用介紹課件_第1頁
硅負極材料的相關(guān)應用介紹課件_第2頁
硅負極材料的相關(guān)應用介紹課件_第3頁
硅負極材料的相關(guān)應用介紹課件_第4頁
硅負極材料的相關(guān)應用介紹課件_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

壽命壽命硅負采材料

Silicon

anode

with

life

cycle

lifeProf.XinpingQiuDepartmentofChemistry,TsinghuaUniversityBeijing,100084,China壽命壽命硅負采材料

Siliconanodewithl9/26/2023DifficultiesforsiliconanodeapplicationLargevolumeexchangeleadtostructuralfailureofelectrodeRelativelowconductivityandrateperformanceElectronnumberEnergydensityMolecularmassSi:4200mAh/g2Multielectronreactionmaterials8/7/2023Difficultiesforsilic9/26/2023J.R.Dahn,Electrochem.Solid-StateLett.,2001,4,A137.J.R.Dahn,J.Electrochem.Soc.2003,150,A1457.3ColossalvolumechangeChangein(a)length+andwidthx,(b)height,and(c)volumeofthea-Sitowercomparedto(d)voltagevs.AFMscannumber.SchematicdiagramoftheinsituAFMapparatus.OpticalmicrographofaLi-alloyfilmafterexpansion8/7/2023J.R.Dahn,Electrochem9/26/2023Y.Cui,Nat.Nanotechnol.,2008,3,31.|Y.Cui,NanoLett.2011,11,2949.|G.Yushin,Nat.Mater.,2010,9,353.|G.A.Ozin,Adv.Funct.Mater.2009,19,1999.|X.J.Huang,Adv.Mater.2011,23,4938.|X.P.Qiu,Electrochem.Commun.,2007,5,930.|S.M.Lee,Electrochim.Acta,2008,53,4500.|J.G.Zhang,J.Electrochem.Soc.,2010,7,A765.|J.R.Dahn,Electrochem.Solid-StateLett.,2007,10,A17.|G.Yushin,ACSAppl.Mater.Inter.,2010,11,3004.|G.Yushin,Science,2011,334,75.SibasedanodeNanomaterialsSiarrayCurrentcollectorBinder4Strategiesforsiliconanodes8/7/2023Y.Cui,Nat.NanotechnParticlepulverization

“Astrongsizedependenceoffractureinsiliconmaterialwasdiscoveredthatthereexistsacriticalparticlesizeof~150nmbelowwhichcrackingdidnotoccur.”

[2]Sizeeffect[1]HZhang,NanoLetters2012,12,2778.;[2]XHLiu,ACSNano.2012,2,1522–15319/26/20235ElectrodeElectroniccontactInterfaceStabilityofSEIfilmParticleFractureandPulverizationCurrentcollector;Binder;ArrayStabilityinSi-basedmaterial?[1]Particlepulverization“AstrLiinsertionLiextractionLongcycles9/26/20236TheexposedactivesurfaceduetothevolumechangecausecontinualformationofSEIfilmsandlowcoulombicefficiency(CE).ResearchroutesReducetheparticlesizetoaccommodateSEIfilmDesignporousorhollowstructuretobufferthevolumeexpansionCompositewithCorMetal(Cu)toincreaseelectronicconductivityandmodifytheinterfacebetweenSiandelectrolyte.InvestigatenewbinderandelectrolyteadditivessystemforSi-basedanodematerialsStabilityofSEIfilmLiinsertionLiextractionLong75%SiH4+95%Ar5%H2&95%Ar450

C,1h-2.5hCalcination2N2atmosphere900C,4hN2atmosphere225C,1h500C,2hHeatingunderstirringPorouscarbon80C,solventevaporationCalcination1RemovetemplateHClSiCVDPorousSi-C

NanoCaCO3

SucrosesolutionDepositedsiliconCarbonframeworkafter1stand2ndcalcination9/26/2023PorousSi/CcompositeSynthesisProcess75%SiH4+95%ArCalcination9/26/2023Morphology8in1bold,1ePorousstructureofcarbonsubstratecanbeobservedfromTEMimagesAfterCVD,siliconparticlesadheretotheframeworkandporousstructurewasmaintained.Particlesizeofsiliconis~10nmandhomogeneouslydispersed.ThedepositedsiliconinPorousSi-Cisamorphous,asindicatedbytheabsenceofcrystallitesandbroaddiffuseringsintheSAEDpatterns.Incontrast,whencompositeisheatedto700°Cfor0.5h,alatticefringecorrespondingtod111=0.31nmforsiliconisseeninPorousSi-C-700.ResultsandanalysisSEMandTEMimages8/7/2023Morphology8in1bold9/26/20239in1bold,1eObviouscharacteristicpeakofcrystalsiliconafterheattreatmentat700Cfor0.5hThreeobviousdiffractionpeaksaround28°,47°and56°arefoundafterheattreatment,whichcorrespondverywelltothe(111),(220)and(311)peaksofsiliconwithoutanyimpuritypeaks.Thepeakat520cm-1(indicativeofcrystallinesilicon)isnotdetectedaftersiliconCVD.Thebandscenteredaround155,474cm-1andtheweakshoulderat400cm-1aretypicalfeaturesofamorphoussiliconvibrationmodes[1].ResultsandanalysisStructuralcharacterization[1]D.Aurbach,J.Phys.Chem.C,2007,111,11437.XRDpatternsandRamanspectra8/7/20239in1bold,1eResultN2sorptionisothermsPoresizedistributionBothporouscarbonandporousSi-CshowtypeIVisotherm,whichistypicalcharacteristicofmesoporousstructureObviousdecreaseofspecificsurfacearea(SSA)andporevolumeafterSiCVDPorouscarbon:650m2/g,1.32cc/gPorousSi-C:150m2/g,0.39cc/gPoreswithdiameterof~3nmgeneratedby

decompositionofsucrosePoreswithdiameterof10~40nmduetotheremovalofCaCO3template,whichwerereducedafterSiCVDPorousStructure9/26/202310N2sorptionisothermsPoresizeCharge-DischargecurvesCyclingperformance1)2ndchargecapacity;2)VC:vinylenecarbonate9/26/202311Electrochemicalperformance1stdchcapacity:2404mAh/g1stchcapacity:1541mAh/g1stcoulombicefficiency:64.1%Reversiblecapacity1:1504mAh/gCapacityretention:67%after200cyclesRecipe:PorousSi-C:CB:binder(PAA)=6:2:2;Electrolyte:1MLiPF6inEC-DMC-EMC(1:1:1vol%)with2wt%VC2;loading:0.61

mg/cm2.Capacityisonlybasedonactivematerial.Currentdensity:0.1A/gfor1-2cycle,then0.5A/g;Voltage:0.05–2.0Vvs.LiCharge-DischargecurvesCyclingRatecapabilityIncreasecurrentdensityfrom0.1to2Ag-1,thespecificcapacityofSi/Ccompositeisstillabove500mAhg-1,whenthecurrentdensitychangesbackto0.1Ag-1,morethan92%ofthecapacityatthefirsttencyclesisrecoverable.9/26/202312CurrentDensity(A/g)Dischargecapacity(mAh/g)Chargecapacity(mAh/g)Coulombicefficiency(%)0.192386293.40.562962699.51.046146099.72.03113111000.176675798.9ResultsandanalysisRatecapabilityIncreasecurrenNyquistplotofSi-Ccompositeattheendofdischargeafterdifferentcyclesin1bold,1eElectrochemicalimpedancespectra(EIS)measurementina5.0mVACvoltagesignalinthe105-0.02Hzfrequencyrange.BeforeeachEIStest,theelectrodesweredischargedto0.01Vgalvanostaticallyandthenremainedatopen-circuitforatleast2htostabilizetheirpotential.Theconstancyofthecharacteristicfrequency(20Hz,from30-60cycles)suggeststhatthekineticsofthechargetransferreactiondoesnotvaryuponcycling.Evolutionoftheresistanceinmid-frequencyregion(inset)showsanincreaseinfirst5cyclesthenreduceandmaintainaround40Ohminlatercycles.Resultsandanalysis9/26/202313EIStest[1]D.Guyomard,J.Mater.Chem.,2011,21,6201.NyquistplotofSi-CcompositeSEIfilmwithcyclingSuperficialandcross-sectionalSEMimagesofourcompositeaftera),b)10cycles;c),d)20cycles;e),f)50cyclesandg),h)commercialSimaterialafter50cycles.a)b)d)c)h)g)f)e)PorousstructureofoursynthesizedcompositestillmaintainsaftercyclingandSEIfilmisonlyobservedattheexternalsurfaceofthesiliconparticlewithoutobviousincrassation.IncommercialSimeasurements,excessiveSEIfilmisfoundafter50cycles,whichisunabletobedistinguishedfromSinanoparticles.9/26/202314SEIfilmwithcyclingSuperficiMaterialsaftercycling[1]Y.Cui,NanoLett.10(2010)1409Si/Cafter50cyclesa)SEMandb)TEMimageofSi/Ccompositeattheendof50thcycle;

thecorrespondingelementalmappingofc)carbonandd)silicon.1mMofaceticacidwasusedtoremovetheSEIfilm[1].Porouscarbonstructureismaintained,nanosiliconparticlesaround10nmdoesnotshowaggregationandrupture.Resultsandanalysisa)b)c)d)C-KSi-K9/26/202315Materialsaftercycling[1]Y.SEIconfinementSchematic9/26/202316SEIfilmformsinsidetheporesduetothelowelectrochemicalpotentialoflithiuminsertioninfirstfewcycles.Whentheporesarefullfilled,SEIfilmisconfinedbythewallofcarbonsubstrate,whichpreventtheinternalsiliconparticlefrombeingexposedintheelectrolyte.ResultsSEIconfinementSchematic8/7/209/26/202317SchematicofsynthesisAdvantage:1.EasytosynthesisandregulateaccordingtocommercialCaCO3template2.Hollowstructurewithreservevolumecanaccommodatelargevolumechanges3.Interconnectednanosiliconmeansmoreactiveconductivecontact.NanoCaCO3SiliconlayerLegend:HollowsiliconPurificationbyHFacid(10wt%)5%SiH4+95%Ar400-500

C,1h-2.5hSiCVDTemplateremovalbyHClacid(2wt%)8/7/202317Schematicofsynthes9/26/202318ImagesandpatternsMorphologyResultsa)TEMimagesofnanoCaCO3template;b)SEMimagesofHSA-10(insetisatlowmagnification);TEMimagesofc)HSA-10,e)HSA-15,f)HSA-20;d)thecorrespondingSAEDpatternofHSA-10.Amorphoushollowsiliconmaterialwithdifferentshellthicknesswaspreparedabcdef8/7/202318ImagesandpatternsM9/26/202319ImagesandpatternsStructuralcharacterizationbcCharacteristicpeaksofcrystallinesilicon(PDF#65-1060)around28°,47°and56°areabsent,whichcorroboratethestatementofsiliconisamorphous.Thefirstmain3/2-1/2doublet(thespin-orbitsplittingis0.6eVandtheintensityratiois3:1),locatedat99.1-99.7eVcorrespondstoSi0(75%content).Thecomponentlocatedathigherbindingenergy(100.0eV)isassociatedwithSiOxformedatthesurfaceofHSAwithaproportionof25%.Resultsandanalysis8/7/202319ImagesandpatternsS9/26/202320ResultsandanalysisThenitrogenadsorption/desorptionisothermsofHSAsamplesshowasharpcapillarycondensationstepathighrelativepressures(P/P0=0.85-0.99),indicatingtheexistenceoflargepores.Correspondingporesizedistributesmainlyintherangeof20nmand100nm,whichisattributedtotheremovalofsite-occupyingnanoCaCO3.IsothermandPoresizedistributionPorousStructureSampleSpecificsurfacearea(m2g-1)Porevolume(ccg-1)HSA-1050.40.983HSA-1538.60.221HSA-2032.70.0918/7/202320Resultsandanalysis9/26/202321CyclingperformanceCycleperformanceTestconditionsRecipe:HS:CB:binder(PAA)=6:2:2Electrolyte:1MLiPF6inEC-DMC-EMC(1:1:1vol%)with2wt%VC;Loading:0.4-0.6mgcm-2

Currentdensity:0.1A/gfor1-3cycle,then0.4A/g;Voltage:0.02–1.50Vvs.LiResultsHSA-10givesthehighestcapacityretention(91%)in100cyclesandcorrespondingreversiblecapacityis~980mAhg-1.Whenincreasetheshellthicknessofsilicon,reversiblecapacityincreases(980mAhg-1ofHSA-15and1133mAhg-1ofHSA-20after100cycles)butthecapacityretentiondecreasesobviously(76%ofHSA-15and73%ofHSA-20)Electrochemicalperformance8/7/202321CyclingperformanceCMaterialsaftercycling[1]Y.Cui,NanoLett.10(2010)1409HAS-10after50cyclesa)SEMimageofHSA-10after100cycles;b)SEMimageofHSA-10after100cycleswithoutSEIfilm;c),d)TEMimageofHSA-10after100cycleswithoutSEIfilmatdifferentmagnification.Aggregatedsecondaryparticles(Fig.c)and~10nmsiliconshellstructure(Fig.b&d)weremaintainedwithoutfractureofthehollowspheres.Resultsandanalysis9/26/202322abcdMaterialsaftercycling[1]Y.EIStest9/26/202323StableinterfaceandsmallerresistanceNyquistplotofSi-Ccompositeattheendofdischargeafterdifferentcyclesin1bold,1eElectrochemicalimpedancespectra(EIS)measurementina5.0mVACvoltagesignalinthe105-0.02Hzfrequencyrange.BeforeeachEIStest,theelectrodesweredischargedto0.01Vgalvanostaticallyandthenremainedatopen-circuitforatleast2htostabilizetheirpotential.Evolutionoftheresistanceinmid-frequencyregionmaintains~20OhmduringcyclingwhichislowerthanSi/CcompositeandnanoSimaterial.ResultsandanalysisEIStest8/7/202323StableinterDSCTest9/26/202324StableSEIstructureofsiliconfoamDSCheatingcurvesin1bold,1eCurrentdensityaround0.1mA/gwasappliedtolithiatetheSiactivematerial.Afterthevoltagereached1mV,thecellswereremainedatopen-circuitfor2hthencarefullyopenedinaglovebox.TheelectrodewassoakedinDMCandthendriedundervacuumovernight.MeasurementswereconductedwithaDSC1(METTLERTOLEDO)atatemperaturerampof2?Cmin-1(30-300

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論