![2024屆內(nèi)蒙古自治區(qū)通遼市九年級數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view/7b0f4e5807aceb4e4ea0f1aa4d84c7b5/7b0f4e5807aceb4e4ea0f1aa4d84c7b51.gif)
![2024屆內(nèi)蒙古自治區(qū)通遼市九年級數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view/7b0f4e5807aceb4e4ea0f1aa4d84c7b5/7b0f4e5807aceb4e4ea0f1aa4d84c7b52.gif)
![2024屆內(nèi)蒙古自治區(qū)通遼市九年級數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view/7b0f4e5807aceb4e4ea0f1aa4d84c7b5/7b0f4e5807aceb4e4ea0f1aa4d84c7b53.gif)
![2024屆內(nèi)蒙古自治區(qū)通遼市九年級數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view/7b0f4e5807aceb4e4ea0f1aa4d84c7b5/7b0f4e5807aceb4e4ea0f1aa4d84c7b54.gif)
![2024屆內(nèi)蒙古自治區(qū)通遼市九年級數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view/7b0f4e5807aceb4e4ea0f1aa4d84c7b5/7b0f4e5807aceb4e4ea0f1aa4d84c7b55.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆內(nèi)蒙古自治區(qū)通遼市九年級數(shù)學(xué)第一學(xué)期期末檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在Rt△ABC中,∠C=90°,AC=3,AB=5,則cosB的值為()A. B. C. D.2.關(guān)于x的方程x2﹣mx+6=0有一根是﹣3,那么這個方程的另一個根是()A.﹣5 B.5 C.﹣2 D.23.如圖,矩形ABCD中,AB=8,BC=1.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是()A.2 B.3 C.5 D.64.設(shè)A(x1,y1)、B(x2,y2)是反比例函數(shù)圖象上的兩點.若x1<x2<0,則y1與y2之間的關(guān)系是(
)A.y1<y2<0
B.y2<y1<0
C.y2>y1>0
D.y1>y2>05.如圖,在Rt△ABC中,CD是斜邊AB上的高,∠A≠45°,則下列比值中不等于cosA的是()A. B. C. D.6.一元二次方程的正根的個數(shù)是()A. B. C. D.不確定7.國家規(guī)定存款利息的納稅辦法是:利息稅=利息×20%,銀行一年定期儲蓄的年利率為2.25%,今小王取出一年到期的本金和利息時,交納利息稅4.5元,則小王一年前存入銀行的錢為().A.1000元 B.977.5元 C.200元 D.250元8.如圖,在正方形網(wǎng)格中,已知的三個頂點均在格點上,則的正切值為()A. B. C. D.9.要使方程是關(guān)于x的一元二次方程,則()A.a(chǎn)≠0 B.a(chǎn)≠3C.a(chǎn)≠3且b≠-1 D.a(chǎn)≠3且b≠-1且c≠010.如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于點、,點是軸正半軸上的一點,當(dāng)時,則點的縱坐標(biāo)是()A.2 B. C. D.11.已知,則的值是()A. B.2 C. D.12.已知△ABC與△DEF相似且對應(yīng)周長的比為4:9,則△ABC與△DEF的面積比為A.2:3 B.16:81C.9:4 D.4:9二、填空題(每題4分,共24分)13.在△ABC中,AB=10,AC=8,B為銳角且,則BC=_____.14.超市經(jīng)銷一種水果,每千克盈利10元,每天銷售500千克,經(jīng)市場調(diào)查,若每千克漲價1元,日銷售量減少20千克,現(xiàn)超市要保證每天盈利6000元,每千克應(yīng)漲價為______元.15.如圖,邊長為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O在格點上,則∠AED的正切值為_____.16.如圖,在△ABC中,∠A=90°,AB=AC=2,以AB為直徑的圓交BC于點D,求圖中陰影部分的面積為_____.17.在一個不透明的口袋中裝有5個紅球和3個白球,他們除顏色外其他完全相同,任意摸出一個球是白球的概率為________.18.在一只不透明的口袋中放入只有顏色不同的白色球3個,黑色球5個,黃色球n個,攪勻后隨機(jī)從中摸取一個恰好是白色球的概率為,則放入的黃色球數(shù)n=_________.三、解答題(共78分)19.(8分)如圖,PB與⊙O相切于點B,過點B作OP的垂線BA,垂足為C,交⊙O于點A,連結(jié)PA,AO,AO的延長線交⊙O于點E,與PB的延長線交于點D.(1)求證:PA是⊙O的切線;(2)若tan∠BAD=,且OC=4,求PB的長.20.(8分)某商場試銷一種成本為每件元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),且時,;時,.求一次函數(shù)的表達(dá)式;若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?21.(8分)(1)如圖1,O是等邊△ABC內(nèi)一點,連接OA、OB、OC,且OA=3,OB=4,OC=5,將△BAO繞點B順時針旋轉(zhuǎn)后得到△BCD,連接OD.求:①旋轉(zhuǎn)角的度數(shù);線段OD的長為.②求∠BDC的度數(shù);(2)如圖2所示,O是等腰直角△ABC(∠ABC=90°)內(nèi)一點,連接OA、OB、OC,將△BAO繞點B順時針旋轉(zhuǎn)后得到△BCD,連接OD.當(dāng)OA、OB、OC滿足什么條件時,∠ODC=90°?請給出證明.22.(10分)如圖,AB是⊙O的直徑,DO⊥AB于點O,連接DA交⊙O于點C,過點C作⊙O的切線交DO于點E,連接BC交DO于點F.(1)求證:CE=EF;(2)連接AF并延長,交⊙O于點G.填空:①當(dāng)∠D的度數(shù)為時,四邊形ECFG為菱形;②當(dāng)∠D的度數(shù)為時,四邊形ECOG為正方形.23.(10分)已知:在⊙O中,弦AC⊥弦BD,垂足為H,連接BC,過點D作DE⊥BC于點E,DE交AC于點F(1)如圖1,求證:BD平分∠ADF;(2)如圖2,連接OC,若AC=BC,求證:OC平分∠ACB;(3)如圖3,在(2)的條件下,連接AB,過點D作DN∥AC交⊙O于點N,若AB=3,DN=1.求sin∠ADB的值.24.(10分)某公司2019年10月份營業(yè)額為萬元,12月份營業(yè)額達(dá)到萬元,求該公司兩個月營業(yè)額的月平均增長率.25.(12分)在平面直角坐標(biāo)系中,拋物線的頂點為P,且與y軸交于點A,與直線交于點B,C(點B在點C的左側(cè)).(1)求拋物線的頂點P的坐標(biāo)(用含a的代數(shù)式表示);(2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點,記拋物線與線段AC圍成的封閉區(qū)域(不含邊界)為“W區(qū)域”.①當(dāng)時,請直接寫出“W區(qū)域”內(nèi)的整點個數(shù);②當(dāng)“W區(qū)域”內(nèi)恰有2個整點時,結(jié)合函數(shù)圖象,直接寫出a的取值范圍.26.如圖,在銳角三角形ABC中,AB=4,BC=,∠B=60°,求△ABC的面積
參考答案一、選擇題(每題4分,共48分)1、B【題目詳解】解:在Rt△ABC中,∠C=90°,AC=3,AB=5,由勾股定理,得:BC===1.cosB==,故選B.【題目點撥】本題考查銳角三角函數(shù)的定義.2、C【分析】根據(jù)兩根之積可得答案.【題目詳解】設(shè)方程的另一個根為a,∵關(guān)于x的方程x2﹣mx+6=0有一根是﹣3,∴﹣3a=6,解得a=﹣2,故選:C.【題目點撥】本題主要考查了根與系數(shù)的關(guān)系,一元二次方程的根與系數(shù)的關(guān)系:若方程兩個為,,則.3、C【解題分析】試題分析:連接EF交AC于點M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質(zhì)可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點:菱形的性質(zhì);矩形的性質(zhì);勾股定理;銳角三角函數(shù).4、B【解題分析】先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限,再根據(jù)x1<x1<0即可得出結(jié)論.【題目詳解】∵反比例函數(shù)中,k=1>0,∴函數(shù)圖象的兩個分支位于一、三象限,且在每一象限內(nèi)y隨x的增大而減小,∵x1<x1<0,
∴0>y1>y1.故選:B【題目點撥】本題考查的是反比例函數(shù)圖象上點的坐標(biāo)特點,熟知反比例函數(shù)圖象上各點的坐標(biāo)一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.5、A【解題分析】根據(jù)垂直定義證出∠A=∠DCB,然后根據(jù)余弦定義可得答案.【題目詳解】解:∵CD是斜邊AB上的高,∴∠BDC=90°,∴∠B+∠DCB=90°,∵∠ACB=90°,∴∠A+∠B=90°,∴∠A=∠DCB,∴cosA=故選A.【題目點撥】考查了銳角函數(shù)定義,關(guān)鍵是掌握余弦=鄰邊:斜邊.6、B【分析】解法一:根據(jù)一元二次方程的解法直接求解判斷正根的個數(shù);解法二:先將一元二次方程化為一般式,再根據(jù)一元二次方程的根與系數(shù)的關(guān)系即可判斷正根的個數(shù).【題目詳解】解:解法一:化為一般式得,,∵a=1,b=3,c=?4,則,∴方程有兩個不相等的實數(shù)根,∴,即,,所以一元二次方程的正根的個數(shù)是1;解法二:化為一般式得,,,方程有兩個不相等的實數(shù)根,,則、必為一正一負(fù),所以一元二次方程的正根的個數(shù)是1;故選B.【題目點撥】本題考查了一元二次方程的解法,熟練掌握解一元二次方程的步驟是解題的關(guān)鍵;如果只判斷正根或負(fù)根的個數(shù),也可靈活運用一元二次方程的根與系數(shù)的關(guān)系進(jìn)行判斷.7、A【分析】利息問題是一個難點,要把握好利息、本金、利息稅的概念,由利息稅可求得利息為4.5÷20%=22.5元,根據(jù)年利率又可求得本金.【題目詳解】解:據(jù)題意得:利息為4.5÷20%=22.5元本金為22.5÷2.25%=1000元.故選:A.【題目點撥】本題考查利息問題,此題關(guān)系明確,關(guān)鍵是分清利息、本金、利息稅的概念.8、D【分析】延長交網(wǎng)格于,連接,得直角三角形ACD,由勾股定理得出、,由三角函數(shù)定義即可得出答案.【題目詳解】解:延長交網(wǎng)格于,連接,如圖所示:則,,,的正切值;故選:D.【題目點撥】本題考查了解直角三角形以及勾股定理的運用;熟練掌握勾股定理,構(gòu)造直角三角形是解題的關(guān)鍵.9、B【分析】根據(jù)一元二次方程的定義選出正確選項.【題目詳解】解:∵一元二次方程二次項系數(shù)不能為零,∴,即.故選:B.【題目點撥】本題考查一元二次方程的定義,解題的關(guān)鍵是掌握一元二次方程的定義.10、D【分析】首先過點B作BD⊥AC于點D,設(shè)BC=a,根據(jù)直線解析式得到點A、B坐標(biāo),從而求出OA、OB的長,易證△BCD≌△ACO,再根據(jù)相似三角形的對應(yīng)邊成比例得出比例式,即可解答.【題目詳解】解:過點B作BD⊥AC于點D,設(shè)BC=a,∵直線與軸、軸分別交于點、,∴A(-2,0),B(0,1),即OA=2,OB=1,AC=,∵,∴AB平分∠CAB,又∵BO⊥AO,BD⊥AC,∴BO=BD=1,∵∠BCD=∠ACO,∠CDB=∠COA=90°,∴△BCD≌△ACO,∴,即a:=1:2解得:a1=,a2=-1(舍去),∴OC=OB+BC=+1=,所以點C的縱坐標(biāo)是.故選:D.【題目點撥】本題考查相似三角形的判定與性質(zhì)、角平分線的性質(zhì)的綜合運用,解題關(guān)鍵是恰當(dāng)作輔助線利用角平分線的性質(zhì).11、C【分析】設(shè)x=5k(k≠0),y=2k(k≠0),代入求值即可.【題目詳解】解:∵∴x=5k(k≠0),y=2k(k≠0)∴故選:C.【題目點撥】本題考查分式的性質(zhì)及化簡求值,根據(jù)題意,正確計算是解題關(guān)鍵.12、B【解題分析】直接根據(jù)相似三角形周長的比等于相似比,面積比等于相似比的平方解答.【題目詳解】解:∵△ABC與△DEF相似且對應(yīng)周長的比為4:9,∴△ABC與△DEF的相似比為4:9,∴△ABC與△DEF的面積比為16:81.故選B【題目點撥】本題考查的是相似三角形的性質(zhì),即相似三角形周長的比等于相似比,面積的比等于相似比的平方.二、填空題(每題4分,共24分)13、8+2或8﹣2【分析】分兩種情況進(jìn)行解答,即①∠ACB為銳角,②∠ACB為鈍角,分別畫出圖形,利用三角函數(shù)解直角三角形即可.【題目詳解】過點A作AD⊥BC,垂足為D,①當(dāng)∠ACB為銳角時,如圖1,在Rt△ABD中,BD=AB?cosB=10×=8,AD==6,在Rt△ACD中,CD==2,∴BC=BD+CD=8+2,②當(dāng)∠ACB為鈍角時,如圖2,在Rt△ABD中,BD=AB?cosB=10×=8,AD==6,在Rt△ACD中,CD==2,∴BC=BD﹣CD=8﹣2,故答案為:8+2或8﹣2.【題目點撥】考查直角三角形的邊角關(guān)系,理解銳角三角函數(shù)的意義是正確解答的關(guān)鍵,分類討論在此類問題中經(jīng)常用到.14、5或1【分析】設(shè)每千克水果應(yīng)漲價x元,得出日銷售量將減少20x千克,再由盈利額=每千克盈利×日銷售量,依題意得方程求解即可.【題目詳解】解:設(shè)每千克水果應(yīng)漲價x元,依題意得方程:(500-20x)(1+x)=6000,整理,得x2-15x+50=0,解這個方程,得x1=5,x2=1.答:每千克水果應(yīng)漲價5元或1元.故答案為:5或1.【題目點撥】本題考查了一元二次方程的應(yīng)用,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列方程.15、.【題目詳解】解:根據(jù)圓周角定理可得∠AED=∠ABC,所以tan∠AED=tan∠ABC=.故答案為:.【題目點撥】本題考查圓周角定理;銳角三角函數(shù).16、1【分析】連接AD,由圖中的圖形關(guān)系看出陰影部分的面積可以簡化成一個三角形的面積,然后通過已知條件求出面積.【題目詳解】解:連接AD,
∵AB=BC=2,∠A=90°,∴∠C=∠B=45°,∴∠BAD=45°,∴BD=AD,∴BD=AD=,∴由BD,AD組成的兩個弓形面積相等,∴陰影部分的面積就等于△ABD的面積,∴S△ABD=AD?BD=××=1.故答案為:1.【題目點撥】本題考查的是扇形面積的計算,根據(jù)題意作出輔助線,構(gòu)造出等腰直角三角形是解答此題的關(guān)鍵.17、【題目詳解】解:∵在一個不透明的口袋中裝有5個紅球和3個白球,∴任意從口袋中摸出一個球來,P(摸到白球)==.18、1
【分析】根據(jù)口袋中裝有白球3個,黑球5個,黃球n個,故球的總個數(shù)為3+5+n,再根據(jù)黃球的概率公式列式解答即可.【題目詳解】∵口袋中裝有白球3個,黑球5個,黃球n個,∴球的總個數(shù)為3+5+n,∵從中隨機(jī)摸出一個球,摸到白色球的概率為,即,解得:n=1,故答案為:1.【題目點撥】本題主要考查概率公式,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.三、解答題(共78分)19、(1)證明見解析(2)PB=3【分析】(1)通過證明△PAO≌△PBO可得結(jié)論;(2)根據(jù)tan∠BAD=,且OC=4,可求出AC=6,再證得△PAC∽△AOC,最后利用相似三角形的性質(zhì)以及勾股定理求得答案.【題目詳解】解:(1)連結(jié)OB,則OA=OB,如圖1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分線,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO,∵PB為⊙O的切線,B為切點,∴PB⊥OB,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切線;(2)∵在Rt△AOC中,tan∠BAD=tan∠CAO=,且OC=4,∴AC=6,則BC=6,∴,在Rt△APO中,AC⊥OP,易得△PAC∽△AOC,∴,即AC2=OC?PC,∴PC=9,∴OP=PC+OC=13,在Rt△PBC中,由勾股定理,得PB=.【題目點撥】此題考查了切線的判定與性質(zhì)、勾股定理、全等三角形的判定與性質(zhì)、銳角三角函數(shù)、相似三角形的判定和性質(zhì),考查的知識點較多,關(guān)鍵是熟練掌握一些基本性質(zhì)和定理,在解答綜合題目時能靈活運用.20、(1);(2)銷售單價定為元時,商場可獲得最大利潤,最大利潤是元.【分析】(1)根據(jù)題意將(65,55),(75,45)代入解二元一次方程組即可;(2)表示出利潤解析式,化成頂點式討論即可解題.【題目詳解】解:根據(jù)題意得,解得.所求一次函數(shù)的表達(dá)式為.(2),∵拋物線的開口向下,∴當(dāng)時,隨的增大而增大,又因為獲利不得高于45%,60所以,∴當(dāng)時,.∴當(dāng)銷售單價定為元時,商場可獲得最大利潤,最大利潤是元.【題目點撥】本題考查了二次函數(shù)的實際應(yīng)用,中等難度,表示出二次函數(shù)的解析式是解題關(guān)鍵.21、(1)①,4;②;(2),證明見解析.【分析】(1)①根據(jù)等邊三角形的性質(zhì)得BA=BC,∠ABC=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠OBD=∠ABC=60°,于是可確定旋轉(zhuǎn)角的度數(shù)為60°;由旋轉(zhuǎn)的性質(zhì)得BO=BD,加上∠OBD=60°,則可判斷△OBD為等邊三角形,所以O(shè)D=OB=4;②由△BOD為等邊三角形得到∠BDO=60°,再利用旋轉(zhuǎn)的性質(zhì)得CD=AO=3,然后根據(jù)勾股定理的逆定理可證明△OCD為直角三角形,∠ODC=90°,所以∠BDC=∠BDO+∠ODC=150°;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得∠OBD=∠ABC=90°,BO=BD,CD=AO,則可判斷△OBD為等腰直角三角形,則OD=OB,然后根據(jù)勾股定理的逆定理,當(dāng)CD2+OD2=OC2時,△OCD為直角三角形,∠ODC=90°.【題目詳解】解:(1)①∵△ABC為等邊三角形,∴BA=BC,∠ABC=60°,∵△BAO繞點B順時針旋轉(zhuǎn)后得到△BCD,∴∠OBD=∠ABC=60°,∴旋轉(zhuǎn)角的度數(shù)為60°;∵旋轉(zhuǎn)至,∴,,,∴為等邊三角形∴,,故答案為:60°;4②在中,,,,∵∴∴為直角三角形,,∴(2)時,,理由如下:∵繞點順時針旋轉(zhuǎn)后得到,∴,,,∴為等腰直角三角形,∴∵當(dāng)時,為直角三角形,,∴,即∴當(dāng)滿足時,.【題目點撥】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等邊三角形的判斷與性質(zhì)和勾股定理的逆定理.22、(1)證明見解析;(2)①30°;②22.5°.【解題分析】分析:(1)連接OC,如圖,利用切線的性質(zhì)得∠1+∠4=90°,再利用等腰三角形和互余證明∠1=∠2,然后根據(jù)等腰三角形的判定定理得到結(jié)論;(2)①當(dāng)∠D=30°時,∠DAO=60°,證明△CEF和△FEG都為等邊三角形,從而得到EF=FG=GE=CE=CF,則可判斷四邊形ECFG為菱形;②當(dāng)∠D=22.5°時,∠DAO=67.5°,利用三角形內(nèi)角和計算出∠COE=45°,利用對稱得∠EOG=45°,則∠COG=90°,接著證明△OEC≌△OEG得到∠OEG=∠OCE=90°,從而證明四邊形ECOG為矩形,然后進(jìn)一步證明四邊形ECOG為正方形.詳解:(1)證明:連接OC,如圖,.∵CE為切線,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①當(dāng)∠D=30°時,∠DAO=60°,而AB為直徑,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF為等邊三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用對稱得FG=FC,∵FG=EF,∴△FEG為等邊三角形,∴EG=FG,∴EF=FG=GE=CE,∴四邊形ECFG為菱形;②當(dāng)∠D=22.5°時,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°-67.5°-67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用對稱得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四邊形ECOG為矩形,而OC=OG,∴四邊形ECOG為正方形.故答案為30°,22.5°.點睛:本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了菱形和正方形的判定.23、(1)證明見解析;(2)證明見解析;(3)sin∠ADB的值為.【分析】(1)根據(jù)等角的余角相等即可證明;(2)連接OA、OB.只要證明△OCB≌△OCA即可解決問題;(3)如圖3中,連接BN,過點O作OP⊥BD于點P,過點O作OQ⊥AC于點Q,則四邊形OPHQ是矩形,可知BN是直徑,則HQ=OP=DN=,設(shè)AH=x,則AQ=x+,AC=2AQ=2x+1,BC=2x+1,CH=AC﹣AH=2x+1﹣x=x+1,在Rt△AHB中,BH2=AB2﹣AH2=()2﹣x2.在Rt△BCH中,BC2=BH2+CH2即(2x+1)2=()2﹣x2+(x+1)2,解得x=3,BC=2x+1=15,CH=x+1=12求出sin∠BCH,即為sin∠ADB的值.【題目詳解】(1)證明:如圖1,∵AC⊥BD,DE⊥BC,∴∠AHD=∠BED=10°,∴∠DAH+∠ADH=10°,∠DBE+∠BDE=10°,∵∠DAC=∠DBC,∴∠ADH=∠BDE,∴BD平分∠ADF;(2)證明:連接OA、OB.∵OB=OC=OA,AC=BC,∴△OCB≌△OCA(SSS),∴∠OCB=∠OCA,∴OC平分∠ACB;(3)如圖3中,連接BN,過點O作OP⊥BD于點P,過點O作OQ⊥AC于點Q.則四邊形OPHQ是矩形,∵DN∥AC,∴∠BDN=∠BHC=10°,∴BN是直徑,則OP=DN=,∴HQ=OP=,設(shè)AH=x,則AQ=x+,AC=2AQ=2x+1,BC=AC=2x+1,∴CH=AC﹣AH=2x+1﹣x=x+1在Rt△AHB中,BH2=AB2﹣AH2=()2﹣x2.在Rt△BCH中,BC2=BH2+CH2,即(2x+1)2=()2﹣x2+(x+1)2,整理得2x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年水冷空調(diào)機(jī)組市場環(huán)境分析
- 2025年中國瓣閥行業(yè)市場深度分析及投資策略研究報告
- 個人裝卸勞務(wù)合同范例
- 2025年度高端醫(yī)療器械銷售代理合同
- 修路擋墻工程合同范本
- 買賣寵物定金合同范本
- eps采購合同范本
- 辦公室收購合同范本
- 企業(yè)加薪合同范本
- 傳媒公司資質(zhì)合同范本
- 2025年度有限責(zé)任公司拆伙協(xié)議書范本4篇
- 【8道期末】安徽省蕪湖市2024-2025學(xué)年八年級上學(xué)期期末道德與法治試題(含解析)
- 七年級數(shù)學(xué)新北師大版(2024)下冊第一章《整式的乘除》單元檢測習(xí)題(含簡單答案)
- 2025中考關(guān)于名詞的語法填空專練(二)(含答案)
- 3可伸縮的橡皮筋 說課稿-2023-2024學(xué)年科學(xué)二年級下冊冀人版
- 2024年財政部會計法律法規(guī)答題活動題目及答案一
- 班組現(xiàn)場5S與目視化管理
- 2024年01月廣州期貨交易所2024年招考筆試歷年參考題庫附帶答案詳解
- 和達(dá)投資集團(tuán)(杭州)有限公司招聘筆試沖刺題2025
- 定向鉆出入土點平面布置圖(可編輯)
- 高考日語基礎(chǔ)歸納總結(jié)與練習(xí)(一輪復(fù)習(xí))
評論
0/150
提交評論