BP神經(jīng)網(wǎng)絡(luò)原理_第1頁(yè)
BP神經(jīng)網(wǎng)絡(luò)原理_第2頁(yè)
BP神經(jīng)網(wǎng)絡(luò)原理_第3頁(yè)
BP神經(jīng)網(wǎng)絡(luò)原理_第4頁(yè)
BP神經(jīng)網(wǎng)絡(luò)原理_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

BP神經(jīng)網(wǎng)絡(luò)原理

BP網(wǎng)絡(luò)模型處理信息的基本原理是:輸入信號(hào)Xi通過(guò)中間節(jié)點(diǎn)(隱層點(diǎn))作用于輸出節(jié)點(diǎn),經(jīng)過(guò)非線形變換,產(chǎn)生輸出信號(hào)Yk,網(wǎng)絡(luò)訓(xùn)練的每個(gè)樣本包括X輸入向量和期望輸出量t,網(wǎng)絡(luò)輸出值Y與期望輸出值t之間的偏差,通過(guò)調(diào)整輸入節(jié)點(diǎn)與隱層節(jié)點(diǎn)的聯(lián)接強(qiáng)度取值和隱層節(jié)點(diǎn)與輸出節(jié)點(diǎn)之間的聯(lián)接強(qiáng)度Tjk以及閾值,使誤差沿梯度方向下降,經(jīng)過(guò)反復(fù)學(xué)習(xí)訓(xùn)練,確定與最小誤差相對(duì)應(yīng)的網(wǎng)絡(luò)參數(shù)(權(quán)值和閾值),訓(xùn)練即告停止。此時(shí)經(jīng)過(guò)訓(xùn)練的神經(jīng)網(wǎng)絡(luò)即能對(duì)類似樣本的輸入信息,自行處理輸出誤差最小的經(jīng)過(guò)非線形轉(zhuǎn)換的信息。BP神經(jīng)網(wǎng)絡(luò)模型

BP網(wǎng)絡(luò)模型包括其輸入輸出模型、作用函數(shù)模型、誤差計(jì)算模型和自學(xué)習(xí)模型。(1)節(jié)點(diǎn)輸出模型隱節(jié)點(diǎn)輸出模型:Oj=f(∑Wij×Xi-qj)

(1)輸出節(jié)點(diǎn)輸出模型:Yk=f(∑Tjk×Oj-qk)(2)f-非線形作用函數(shù);q-神經(jīng)單元閾值。

2作用函數(shù)模型作用函數(shù)是反映下層輸入對(duì)上層節(jié)點(diǎn)刺激脈沖強(qiáng)度的函數(shù)又稱刺激函數(shù),一般取為(0,1)內(nèi)連續(xù)取值Sigmoid函數(shù):

f(x)=1/(1+e-x)

(3)誤差計(jì)算模型誤差計(jì)算模型是反映神經(jīng)網(wǎng)絡(luò)期望輸出與計(jì)算輸出之間誤差大小的函數(shù):

Ep=1/2×∑(tpi-Opi)2

tpi-i節(jié)點(diǎn)的期望輸出值;Opi-i節(jié)點(diǎn)計(jì)算輸出值。(4)自學(xué)習(xí)模型神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)過(guò)程,即連接下層節(jié)點(diǎn)和上層節(jié)點(diǎn)之間的權(quán)重拒陣Wij的設(shè)定和誤差修正過(guò)程。BP網(wǎng)絡(luò)有師學(xué)習(xí)方式-需要設(shè)定期望值和無(wú)師學(xué)習(xí)方式-只需輸入模式之分。自學(xué)習(xí)模型為

△Wij(n+1)=h×Фi×Oj+a×△Wij(n)h-學(xué)習(xí)因子;Фi-輸出節(jié)點(diǎn)i的計(jì)算誤差;Oj-輸出節(jié)點(diǎn)j的計(jì)算輸出;a-動(dòng)量因子。BP網(wǎng)絡(luò)模型的缺陷分析及優(yōu)化策略

(1)學(xué)習(xí)因子h的優(yōu)化采用變步長(zhǎng)法根據(jù)輸出誤差大小自動(dòng)調(diào)整學(xué)習(xí)因子,來(lái)減少迭代次數(shù)和加快收斂速度。h=h+a×(Ep(n)-Ep(n-1))/Ep(n)a為調(diào)整步長(zhǎng),0~1之間取值(2)隱層節(jié)點(diǎn)數(shù)的優(yōu)化隱節(jié)點(diǎn)數(shù)的多少對(duì)網(wǎng)絡(luò)性能的影響較大,當(dāng)隱節(jié)點(diǎn)數(shù)太多時(shí),會(huì)導(dǎo)致網(wǎng)絡(luò)學(xué)習(xí)時(shí)間過(guò)長(zhǎng),甚至不能收斂;而當(dāng)隱節(jié)點(diǎn)數(shù)過(guò)小時(shí),網(wǎng)絡(luò)的容錯(cuò)能力差。利用逐步回歸分析法并進(jìn)行參數(shù)的顯著性檢驗(yàn)來(lái)動(dòng)態(tài)刪除一些線形相關(guān)的隱節(jié)點(diǎn),節(jié)點(diǎn)刪除標(biāo)準(zhǔn):當(dāng)由該節(jié)點(diǎn)出發(fā)指向下一層節(jié)點(diǎn)的所有權(quán)值和閾值均落于死區(qū)(通常取±0.1、±0.05等區(qū)間)之中,則該節(jié)點(diǎn)可刪除。最佳隱節(jié)點(diǎn)數(shù)L可參考下面公式計(jì)算:L=(m+n)1/2+c(7)m-輸入節(jié)點(diǎn)數(shù);n-輸出節(jié)點(diǎn)數(shù);c-介于1~10的常數(shù)。(3)輸入和輸出神經(jīng)元的確定利用多元回歸分析法對(duì)神經(jīng)網(wǎng)絡(luò)的輸入?yún)?shù)進(jìn)行處理,刪除相關(guān)性強(qiáng)的輸入?yún)?shù),來(lái)減少輸入節(jié)點(diǎn)數(shù)。(4)算法優(yōu)化由于BP算法采用的是剃度下降法,因而易陷于局部最小并且訓(xùn)練時(shí)間較長(zhǎng)。用基于生物免疫機(jī)制地既能全局搜索又能避免未成熟收斂的免疫遺傳算法IGA取代傳統(tǒng)BP算法來(lái)克服此缺點(diǎn)。優(yōu)化BP神經(jīng)網(wǎng)絡(luò)在系統(tǒng)安全評(píng)價(jià)中的應(yīng)用

系統(tǒng)安全評(píng)價(jià)包括系統(tǒng)固有危險(xiǎn)性評(píng)價(jià)、系統(tǒng)安全管理現(xiàn)狀評(píng)價(jià)和系統(tǒng)現(xiàn)實(shí)危險(xiǎn)性評(píng)價(jià)三方面內(nèi)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論