版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河北省遷西一中2024屆數(shù)學(xué)高一上期末質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)零點的個數(shù)為()A.4 B.3C.2 D.02.已知向量,,且,那么()A.2 B.-2C.6 D.-63.如圖,一質(zhì)點在半徑為1的圓O上以點為起點,按順時針方向做勻速圓周運(yùn)動,角速度為,5s時到達(dá)點,則()A.-1 B.C. D.4.設(shè),是兩條不同的直線,是一個平面,則下列命題正確的是A.若,,則 B.若,,則C.若,,則 D.若,,則5.若關(guān)于的不等式在恒成立,則實數(shù)的取值范圍是()A. B.C. D.6.函數(shù)f(x)=ln(2x)-1的零點位于區(qū)間()A.(2,3) B.(3,4)C.(0,1) D.(1,2)7.已知函數(shù),若實數(shù),則函數(shù)的零點個數(shù)為()A.0 B.1C.2 D.38.如果,那么()A. B.C. D.9.已知在定義域上是減函數(shù),且,則的取值范圍為()A.(0,1) B.(-2,1)C.(0,) D.(0,2)10.函數(shù)是奇函數(shù),則的值為A.0 B.1C.-1 D.不存在二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分圖象如圖所示,則的值是________12.某地街道呈現(xiàn)東—西、南—北向的網(wǎng)格狀,相鄰街距都為1,兩街道相交的點稱為格點.若以互相垂直的兩條街道為坐標(biāo)軸建立平面直角坐標(biāo)系,根據(jù)垃圾分類要求,下述格點為垃圾回收點:,,,,,.請確定一個格點(除回收點外)___________為垃圾集中回收站,使這6個回收點沿街道到回收站之間路程的和最短.13.若則函數(shù)的最小值為________14.在三棱柱中,各棱長相等,側(cè)棱垂直于底面,點是側(cè)面的中心,則與平面所成角的大小是______.15.已知直線平行,則實數(shù)的值為____________16.若,則的值為______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,已知圓的圓心在坐標(biāo)原點,點是圓上的一點(Ⅰ)求圓的方程;(Ⅱ)若過點的動直線與圓相交于,兩點.在平面直角坐標(biāo)系內(nèi),是否存在與點不同的定點,使得恒成立?若存在,求出點的坐標(biāo);若不存在,請說明理由18.已知函數(shù)的圖象兩相鄰對稱軸之間的距離是,若將的圖象先向右平移個單位長度,再向上平移2個單位長度后,所得圖象關(guān)于軸對稱且經(jīng)過坐標(biāo)原點.(1)求的解析式;(2)若對任意,恒成立,求實數(shù)的取值范圍.19.若函數(shù)的定義域為,集合,若存在非零實數(shù)使得任意都有,且,則稱為上的-增長函數(shù).(1)已知函數(shù),函數(shù),判斷和是否為區(qū)間上的增長函數(shù),并說明理由;(2)已知函數(shù),且是區(qū)間上的-增長函數(shù),求正整數(shù)的最小值;(3)如果是定義域為的奇函數(shù),當(dāng)時,,且為上的增長函數(shù),求實數(shù)的取值范圍.20.已知,函數(shù).(1)若關(guān)于的不等式對任意恒成立,求實數(shù)的取值范圍;(2)若關(guān)于的方程有兩個不同實數(shù)根,求的取值范圍.21.(1)計算:;(2)已知,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】由,得,則將函數(shù)零點的個數(shù)轉(zhuǎn)化為圖象的交點的個數(shù),畫出兩函數(shù)的圖象求解即可【題目詳解】由,得,所以函數(shù)零點的個數(shù)等于圖象的交點的個數(shù),函數(shù)的圖象如圖所示,由圖象可知兩函數(shù)圖象有4個交點,所以有4個零點,故選:A2、B【解題分析】根據(jù)向量共線的坐標(biāo)表示,列出關(guān)于m的方程,解得答案.【題目詳解】由向量,,且,可得:,故選:B3、C【解題分析】由正弦、余弦函數(shù)的定義以及誘導(dǎo)公式得出.【題目詳解】設(shè)單位圓與軸正半軸的交點為,則,所以,,故.故選:C4、B【解題分析】利用可能平行判斷,利用線面平行的性質(zhì)判斷,利用或與異面判斷,與可能平行、相交、異面,判斷.【題目詳解】,,則可能平行,錯;,,由線面平行的性質(zhì)可得,正確;,,則,與異面;錯,,,與可能平行、相交、異面,錯,.故選B.【題目點撥】本題主要考查線面平行的判定與性質(zhì)、線面面垂直的性質(zhì),屬于中檔題.空間直線、平面平行或垂直等位置關(guān)系命題的真假判斷,除了利用定理、公理、推理判斷外,還常采用畫圖(尤其是畫長方體)、現(xiàn)實實物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.5、A【解題分析】轉(zhuǎn)化為當(dāng)時,函數(shù)的圖象不在的圖象的上方,根據(jù)圖象列式可解得結(jié)果.【題目詳解】由題意知關(guān)于的不等式在恒成立,所以當(dāng)時,函數(shù)的圖象不在的圖象的上方,由圖可知,解得.故選:A【題目點撥】關(guān)鍵點點睛:利用函數(shù)的圖象與函數(shù)的圖象求解是解題關(guān)鍵.6、D【解題分析】根據(jù)對數(shù)函數(shù)的性質(zhì),得到函數(shù)為單調(diào)遞增函數(shù),再利用零點的存在性定理,即可求解,得到答案.【題目詳解】由題意,函數(shù),可得函數(shù)為單調(diào)遞增函數(shù),且是連續(xù)函數(shù)又由f(1)=ln2-1<0,f(2)=ln4-1>0,根據(jù)函數(shù)零點的存在性定理可得,函數(shù)f(x)的零點位于區(qū)間(1,2)上故選D.【題目點撥】本題主要考查了函數(shù)的零點問題,其中解答中合理使用函數(shù)零點的存在性定理是解答此類問題的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.7、D【解題分析】根據(jù)分段函數(shù)做出函數(shù)的圖象,運(yùn)用數(shù)形結(jié)合的思想可求出函數(shù)的零點的個數(shù),得出選項.【題目詳解】令,得,根據(jù)分段函數(shù)的解析式,做出函數(shù)的圖象,如下圖所示,因為,由圖象可得出函數(shù)的零點個數(shù)為3個,故選:D.【題目點撥】本題考查函數(shù)零點,考查學(xué)生分析解決問題的能力,關(guān)鍵在于做出函數(shù)的圖象,運(yùn)用數(shù)形結(jié)合的思想得出零點個數(shù),屬于中檔題.多選題8、D【解題分析】利用對數(shù)函數(shù)的單調(diào)性,即可容易求得結(jié)果.【題目詳解】因為是單調(diào)減函數(shù),故等價于故選:D【題目點撥】本題考查利用對數(shù)函數(shù)的單調(diào)性解不等式,屬基礎(chǔ)題.9、A【解題分析】根據(jù)函數(shù)的單調(diào)性進(jìn)行求解即可.【題目詳解】因為在定義域上是減函數(shù),所以由,故選:A10、C【解題分析】由題意得,函數(shù)是奇函數(shù),則,即,解得,故選C.考點:函數(shù)的奇偶性的應(yīng)用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】,把代入,得,,,故答案為考點:1、已知三角函數(shù)的圖象求解析式;2、三角函數(shù)的周期性【方法點睛】本題主要通過已知三角函數(shù)的圖象求解析式考查三角函數(shù)的性質(zhì),屬于中檔題.求解析時求參數(shù)是確定函數(shù)解析式的關(guān)鍵,由特殊點求時,一定要分清特殊點是“五點法”的第幾個點,用五點法求值時,往往以尋找“五點法”中的第一個點為突破口,“第一點”(即圖象上升時與軸的交點)時;“第二點”(即圖象的“峰點”)時;“第三點”(即圖象下降時與軸的交點)時;“第四點”(即圖象的“谷點”)時;“第五點”時12、【解題分析】根據(jù)題意,設(shè)滿足題意得格點為,這6個回收點沿街道到回收站之間路程的和為,故,再分別求和的最小值時的即可得答案.【題目詳解】解:設(shè)滿足題意得格點為,這6個回收點沿街道到回收站之間路程和為,則,令,由于其去掉絕對值為一次函數(shù),故其最小值在區(qū)間端點值,所以代入得,所以當(dāng)時,取得最小值,同理,令,代入得所以當(dāng)或時,取得最小值,所以當(dāng),或時,這6個回收點沿街道到回收站之間路程的和最小,由于是一個回收點,故舍去,所以當(dāng),這6個回收點沿街道到回收站之間路程的和最小,故格點為故答案為:13、1【解題分析】結(jié)合圖象可得答案.【題目詳解】如圖,函數(shù)在同一坐標(biāo)系中,且,所以在時有最小值,即.故答案為:1.14、60°【解題分析】取BC的中點E,則,則即為所求,設(shè)棱長為2,則,15、【解題分析】對x,y的系數(shù)分類討論,利用兩條直線平行的充要條件即可判斷出【題目詳解】當(dāng)m=﹣3時,兩條直線分別化為:2y=7,x+y=4,此時兩條直線不平行;當(dāng)m=﹣5時,兩條直線分別化為:x﹣2y=10,x=4,此時兩條直線不平行;當(dāng)m≠﹣3,﹣5時,兩條直線分別化為:y=x+,y=+,∵兩條直線平行,∴,≠,解得m=﹣7綜上可得:m=﹣7故答案為﹣7【題目點撥】本題考查了分類討論、兩條直線平行的充要條件,屬于基礎(chǔ)題16、0【解題分析】由,得到∴sin∴2sin+4兩邊都除以,得:2tan故答案為0三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解題分析】(Ⅰ)設(shè)圓的方程為,將代入,求得,從而可得結(jié)果;(Ⅱ)先設(shè),由可得,再證明對任意,滿足即可,,則利用韋達(dá)定理可得,,由角平分線定理可得結(jié)果.【題目詳解】(Ⅰ)設(shè)圓的方程為,將代入,求得,所以圓的方程為;(Ⅱ)先設(shè),,由由(舍去)再證明對任意,滿足即可,由,則則利用韋達(dá)定理可得,化為所以,由角平分線定理可得,即存在與點不同的定點,使得恒成立,.【題目點撥】本題主要考查待定系數(shù)法求圓方程及韋達(dá)定理、直線和圓的位置關(guān)系及曲線線過定點問題.屬于難題.探索曲線過定點的常見方法有兩種:①可設(shè)出曲線方程,然后利用條件建立等量關(guān)系進(jìn)行消元(往往可以化為的形式,根據(jù)求解),借助于曲線系的思想找出定點(直線過定點,也可以根據(jù)直線的各種形式的標(biāo)準(zhǔn)方程找出定點).②從特殊情況入手,先探求定點,再證明與變量無關(guān).18、(1);(2)【解題分析】(1)根據(jù)周期計算,,時滿足條件,即,過原點得到,得到答案.(2)設(shè),,根據(jù)函數(shù)最值得到,計算得到答案.【題目詳解】(1),,故.向右平移個單位長度,再向上平移2個單位長度得到y(tǒng)=.即,故,即,時滿足條件,即,,故.故(2),故,故,.設(shè),即恒成立.即的最大值小于等于零即可.故滿足:,即,解得【題目點撥】本題考查了三角函數(shù)解析式,函數(shù)恒成立問題,將恒成立問題轉(zhuǎn)化為最值問題是解題的關(guān)鍵.19、(1)是,不是,理由見解析;(2);(3).【解題分析】(1)利用給定定義推理判斷或者反例判斷而得;(2)把恒成立的不等式等價轉(zhuǎn)化,再求函數(shù)最小值而得解;(3)根據(jù)題設(shè)條件,寫出函數(shù)f(x)的解析式,再分段討論求得,最后證明即為所求.【題目詳解】(1)g(x)定義域R,,g(x)是,取x=-1,,h(x)不是,函數(shù)是區(qū)間上的增長函數(shù),函數(shù)不是;(2)依題意,,而n>0,關(guān)于x的一次函數(shù)是增函數(shù),x=-4時,所以n2-8n>0得n>8,從而正整數(shù)n的最小值為9;(3)依題意,,而,f(x)在區(qū)間[-a2,a2]上是遞減的,則x,x+4不能同在區(qū)間[-a2,a2]上,4>a2-(-a2)=2a2,又x∈[-2a2,0]時,f(x)≥0,x∈[0,2a2]時,f(x)≤0,若2a2<4≤4a2,當(dāng)x=-2a2時,x+4∈[0,2a2],f(x+4)≤f(x)不符合要求,所以4a2<4,即-1<a<1.因為:當(dāng)4a2<4時,①x+4≤-a2,f(x+4)>f(x)顯然成立;②-a2<x+4<a2時,x<a2-4<-3a2,f(x+4)=-(x+4)>-a2,f(x)=x+2a2<-a2,f(x+4)>f(x);③x+4>a2時,f(x+4)=(x+4)-2a2>x+2a2≥f(x),綜上知,當(dāng)-1<a<1時,為上的增長函數(shù),所以實數(shù)a的取值范圍是(-1,1).【題目點撥】(1)以函數(shù)為背景定義的創(chuàng)新試題,認(rèn)真閱讀,分析轉(zhuǎn)化成常規(guī)函數(shù)解決;(2)分段函數(shù)解析式中含參數(shù),相應(yīng)區(qū)間也含有相同的這個參數(shù),要結(jié)合函數(shù)圖象綜合考察,并對參數(shù)進(jìn)行分類討論.20、(1);(2).【解題分析】(1)利用函數(shù)的單調(diào)性去掉法則轉(zhuǎn)化成不等式組恒成立,再借助均值不等式計算作答.(2)求出方程的二根,再結(jié)合對數(shù)函數(shù)的意義討論即可計算
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度礦產(chǎn)資源開發(fā)與合作合同
- 2024業(yè)務(wù)員合同協(xié)議書范本
- 2024表演合作合同范本
- 個人土地使用權(quán)部分轉(zhuǎn)讓協(xié)議
- 個人小額貸款合同協(xié)議書
- 廣東省外地職工勞動合同模板
- 2024個人借款擔(dān)保合同范本「標(biāo)準(zhǔn)版」
- 買賣合同因質(zhì)量問題的反訴狀2024年
- 婚內(nèi)財產(chǎn)劃分:債務(wù)承擔(dān)約定
- 2024年私人裝修工人簡單合同
- 2024年國際貨物買賣FOB條款合同
- 華南理工大學(xué)《嵌入式系統(tǒng)》2022-2023學(xué)年期末試卷
- 統(tǒng)編版(2024)七年級上冊道德與法治第三單元《珍愛我們的生命》測試卷(含答案)
- 江蘇省中等職業(yè)學(xué)校學(xué)業(yè)水平考試語文卷含答案
- 售后服務(wù)保障方案3篇
- 2024-2025學(xué)年二年級上學(xué)期數(shù)學(xué)期中模擬試卷(蘇教版)(含答案解析)
- 入團(tuán)志愿書(2016版本)(可編輯打印標(biāo)準(zhǔn)A4) (1)
- 【全面解讀《國有建設(shè)用地使用權(quán)出讓地價評估技術(shù)規(guī)范【2018】4號文》
- 案件移交清單模板
- 等差數(shù)列及其通項公式
- 【土木工程本科畢業(yè)設(shè)計】《混凝土結(jié)構(gòu)》課程設(shè)計
評論
0/150
提交評論