版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
--平方差公式14.3.2公式法因式分解問題1:什么叫多項(xiàng)式的因式分解?
問題2:判斷下列變形過程,哪個(gè)是因式分解?
(1)(x-2)(x-2)=x2-4(2)x2-4+3x=(x+2)(x-2)+3x(3)7m-7n-7=7(m-n-1)
復(fù)習(xí)回顧問題3:用提公因式法的方法分解因式的方法
是什么?1、找公因式:找系數(shù)的最大公約數(shù)、相同字母取次數(shù)最低的。2、找另一個(gè)公因式:用原多項(xiàng)式除于公因式3、提公因式法:把多項(xiàng)式寫成這兩個(gè)飲因式的積的形式想一想:y2-25=?x2-4=?怎樣進(jìn)行因式解?
你發(fā)現(xiàn)兩個(gè)式子有什么特點(diǎn)?它們有公因式嗎?1.一個(gè)多項(xiàng)式如果是由兩項(xiàng)組成
2.兩部分是兩個(gè)式子(或數(shù))的平方,
3.并且這兩項(xiàng)的符號為異號.
你想到了我們剛學(xué)的哪個(gè)公式?探究新知平方差公式:(a+b)(a-b)=a2-b2a2-b2=(a+b)(a-b)反過來:因式分解整式乘法概念:
逆用乘法公式將一個(gè)多項(xiàng)式分解因式的方法叫做公式法。由平方差公式反過來可得=這個(gè)公式叫做因式分解的平方差公式。(a+b)(a-b)=a2-b2(a+b)(a-b)a2-b2a2-b2(a+b)(a-b)因式分解的平方差公式:a2-b2=(a+b)(a-b)兩個(gè)因式的積的形式這兩數(shù)(式)的和這兩數(shù)(式)的差
公式中的a,b可以是單獨(dú)的
、
,也可以是
、
。數(shù)字字母單項(xiàng)式多項(xiàng)式兩個(gè)數(shù)(式)的平方差,等于與的積。判斷下列各式能否用平方差公式分解因式:(1)x2+y2()(2)-x2+y2()(3)-x2-y2()(4)-x4+4y2()=y2-x2=-(x2+y2)=(2y)2-(x2)2具備什么特征的多項(xiàng)式是平方差式?答:1.一個(gè)多項(xiàng)式是由兩項(xiàng)組成,
2.兩部分是兩個(gè)式子(或數(shù))的平方,
3.并且這兩項(xiàng)的符號為異號.運(yùn)用a2-b2=(a+b)(a-b)公式時(shí),如何區(qū)分a、b?答:平方前符號為正,平方下的式子(數(shù))為a因式分解的平方差公式:a2-b2=(a+b)(a-b)
平方前符號為負(fù),平方下的式子(數(shù))為b試一試:2x5m6a20.7b1.填空:4x2=()225m2=()2
36a4=()20.49b2=()2
n6=()2x2y2=()22、(口答)把下列各式分解因式:(1)x2-4 =(x+2)(x-2)(2)9-y2
=(3+y)(3-y)(3)1-a2
=(1+a)(1-a)(4)4x2-y2=(2x+y)(2x-y)例題1:把下列各式分解因式(1)4x2-9解:4x2-9
=(2x)2-32
=(2x+3)(2x-3)把兩項(xiàng)寫成平方的形式,找出a和b利用a2-b2=(a-b)(a+b)分解因式例題1:把下列各式分解因式法一:原式=變式:-4x2+9+9-4x2(前后兩項(xiàng)利用加法交換律交換位置)
=32-(2x)2
=(3+2x)(3-2x)法二:原式=-(4x2
-9)(把各項(xiàng)先提出一個(gè)“負(fù)號”)=-[(2x)2-32]=-(2x+3)(2x-3)例題2:把下列各式分解因式
a2-b2=(a+b)(a-b)(1)ax2-a3(2)2xy2-50x=a(x2-a2)=a(x+a)(x-a)=2x(y2-25)=2x(y+5)(y-5)從這兩題可以看出,分解因式要注意什么問題?練習(xí)2:把下列各式分解因式練習(xí)2:把下列各式分解因式(2)a3b-ab分解因式時(shí),必須進(jìn)行到每個(gè)多項(xiàng)式都不能再分解為止。當(dāng)多項(xiàng)式含有公因式時(shí),通常先提出公因式,然后進(jìn)一步再用公式進(jìn)行分解。練習(xí):因式分解:(1)
–a4+16(2)
4(a+2)2-9(a-1)2(3)
(x+y+z)2-(x-y-z)2(4)
(a-b)n+2-(a-b)n(5)
0.36x2-y2
(6)x2y2-z2
(7)x2-(x-y)2
(8)9(x-y)2-y2課堂小結(jié):1.具有兩式(或兩數(shù))平方差形式的多項(xiàng)式可運(yùn)用平方差公式分解因式。
2.公式a2-b2=(a+b)(a-b)中的a,b可以是數(shù)或字母,也可以是單項(xiàng)式或多項(xiàng)式,應(yīng)視具體情形靈活運(yùn)用。3.分解因式要徹底。要注意每一個(gè)因式的形式要最簡,直到不能再分解為止。4.當(dāng)多項(xiàng)式含有公因式時(shí),通常先提出公因式,然后進(jìn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 一年級數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)匯編
- 規(guī)范校外培訓(xùn)合同(2篇)
- 小丑電影課件教學(xué)課件
- 老師課件制作教學(xué)
- 南京工業(yè)大學(xué)浦江學(xué)院《土力學(xué)與地基基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 南京航空航天大學(xué)《法律文書》2022-2023學(xué)年期末試卷
- soc芯片課件教學(xué)課件
- 石林縣風(fēng)貌改造施工組織設(shè)計(jì)書(二標(biāo)段)
- 南京工業(yè)大學(xué)浦江學(xué)院《企業(yè)家精神創(chuàng)新精神與商業(yè)規(guī)劃》2022-2023學(xué)年第一學(xué)期期末試卷
- 《詠柳》的說課稿
- 建筑工程危險(xiǎn)源辨識風(fēng)險(xiǎn)評價(jià)表
- 三年級上冊美術(shù)課件-4前前后后 |人教新課標(biāo) (共20張PPT)
- 《城市生態(tài)學(xué)》考試復(fù)習(xí)題庫(含答案)
- 幼兒衛(wèi)生保健 第七章幼兒常見意外事故及急救課件
- 六年級上冊數(shù)學(xué)課件-7.4 長方體和正方體整理與復(fù)習(xí)丨蘇教版 (共14張PPT)
- 建筑節(jié)能工程竣工驗(yàn)收報(bào)告3篇(施工單位節(jié)能驗(yàn)收報(bào)告)
- 內(nèi)科學(xué)-骨髓增生異常綜合征(MDS)
- SYB(全)新版最新課件
- 醫(yī)學(xué)研究中安全防護(hù)與相關(guān)法規(guī)葉索夫整理
- 低溫余熱回收利用及節(jié)能技術(shù)
- 四年級上冊數(shù)學(xué)課件 - 第五單元 第6課時(shí)《認(rèn)識梯形》 人教版(共12張PPT)
評論
0/150
提交評論