2024屆貴州省黔西南自治州興仁市鳳凰中學(xué)數(shù)學(xué)高一上期末綜合測試試題含解析_第1頁
2024屆貴州省黔西南自治州興仁市鳳凰中學(xué)數(shù)學(xué)高一上期末綜合測試試題含解析_第2頁
2024屆貴州省黔西南自治州興仁市鳳凰中學(xué)數(shù)學(xué)高一上期末綜合測試試題含解析_第3頁
2024屆貴州省黔西南自治州興仁市鳳凰中學(xué)數(shù)學(xué)高一上期末綜合測試試題含解析_第4頁
2024屆貴州省黔西南自治州興仁市鳳凰中學(xué)數(shù)學(xué)高一上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆貴州省黔西南自治州興仁市鳳凰中學(xué)數(shù)學(xué)高一上期末綜合測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖:在正方體中,設(shè)直線與平面所成角為,二面角的大小為,則為A. B.C. D.2.對于兩條平行直線和圓的位置關(guān)系定義如下:若兩直線中至少有一條與圓相切,則稱該位置關(guān)系為“平行相切”;若兩直線都與圓相離,則稱該位置關(guān)系為“平行相離”;否則稱為“平行相交”.已知直線,與圓的位置關(guān)系是“平行相交”,則實數(shù)的取值范圍為A. B.C. D.3.設(shè)集合,,則()A. B.C. D.4.已知直線與圓交于A,兩點,則()A.1 B.C. D.5.若函數(shù)的定義域為,則為偶函數(shù)的一個充要條件是()A.對任意,都有成立;B.函數(shù)的圖像關(guān)于原點成中心對稱;C.存在某個,使得;D.對任意給定的,都有.6.設(shè)m、n是不同的直線,、、是不同的平面,有以下四個命題:(1)若、,則(2)若,,則(3)若、,則(4)若,,則其中真命題的序號是()A.(1)(4) B.(2)(3)C.(2)(4) D.(1)(3)7.已知函數(shù)fx=3xA.(0,1) B.(1,2)C.(2,3) D.(3,4)8.當時,函數(shù)和的圖像只可能是()A. B.C. D.9.已知向量,滿足,,且與夾角為,則()A. B.C. D.10.青少年視力是社會普遍關(guān)注的問題,視力情況可借助視力表測量.通常用五分記錄法和小數(shù)記錄法記錄視力數(shù)據(jù),小數(shù)記錄法的數(shù)據(jù)V和五分記錄法的數(shù)據(jù)L滿足,已知某同學(xué)視力的五分記錄法的數(shù)據(jù)為4.9,則其視力的小數(shù)記錄法的數(shù)據(jù)約為()(注:)A.0.6 B.0.8C.1.2 D.1.5二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)的最大值為3,最小值為1,則函數(shù)的值域為_________.12.如圖所示,正方體的棱長為,分別是棱,的中點,過直線的平面分別與棱.交于,設(shè),,給出以下四個命題:①平面平面;②當且僅當時,四邊形的面積最??;③四邊形周長,是單調(diào)函數(shù);④四棱錐的體積為常函數(shù);以上命題中真命題的序號為___________.13.若,則___________.14.如圖,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一個點Q滿足PQ⊥QD,則a的值等于________15.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,其中有這樣一個問題:“今有宛田,下周三十步,徑十六步.問為田幾何?”其意思為:“有一塊扇形的田,弧長為30步,其所在圓的直徑為16步,問這塊田的面積是多少平方步?”該問題的答案為___________平方步.16.已知,則___________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知為角終邊上的一點(1)求的值(2)求的值18.對于定義在上的函數(shù),如果存在實數(shù),使得,那么稱是函數(shù)的一個不動點.已知(1)當時,求的不動點;(2)若函數(shù)有兩個不動點,,且①求實數(shù)的取值范圍;②設(shè),求證在上至少有兩個不動點19.如圖所示,已知長方形ABCD,AD=2CD=4,M、N分別為AD、BC的中點,將長方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD(1)求證:直線CM⊥面DFN;(2)求點C到平面FDM的距離20.已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)求函數(shù)在區(qū)間上的最大值和最小值.21.已知集合,集合.(1)當時,求;(2)若,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】連結(jié)BC1,交B1C于O,連結(jié)A1O,∵在正方體ABCD﹣A1B1C1D1中,BC1⊥B1C,BC1⊥DC,∴BO⊥平面A1DCB1,∴∠BA1O是直線A1B與平面A1DCB1所成角θ1,∵BO=A1B,∴θ1=30°;∵BC⊥DC,B1C⊥DC,∴∠BCB1是二面角A1﹣DC﹣A的大小θ2,∵BB1=BC,且BB1⊥BC,∴θ2=45°故答案選:B2、D【解題分析】根據(jù)定義先求出l1,l2與圓相切,再求出l1,l2與圓外離,結(jié)合定義即可得到答案.【題目詳解】圓C的標準方程為(x+1)2+y2=b2.由兩直線平行,可得a(a+1)-6=0,解得a=2或a=-3.當a=2時,直線l1與l2重合,舍去;當a=-3時,l1:x-y-2=0,l2:x-y+3=0.由l1與圓C相切,得,由l2與圓C相切,得.當l1、l2與圓C都外離時,.所以,當l1、l2與圓C“平行相交”時,b滿足,故實數(shù)b的取值范圍是(,)∪(,+∞)故選D.3、D【解題分析】解一元二次不等式求出集合A,利用交集定義和運算計算即可【題目詳解】由題意可得,則故選:D4、C【解題分析】用點到直線距離公式求出圓心到直線的距離,進而利用垂徑定理求出弦長.【題目詳解】圓的圓心到直線距離,所以.故選:C5、D【解題分析】利用偶函數(shù)的定義進行判斷即可【題目詳解】對于A,對任意,都有成立,可得為偶函數(shù)且為奇函數(shù),而當為偶函數(shù)時,不一定有對任意,,所以A錯誤,對于B,當函數(shù)的圖像關(guān)于原點成中心對稱,可知,函數(shù)為奇函數(shù),所以B錯誤,對于CD,由偶函數(shù)的定義可知,對于任意,都有,即,所以當為偶函數(shù)時,任意,,反之,當任意,,則為偶函數(shù),所以C錯誤,D正確,故選:D6、D【解題分析】故選D.7、C【解題分析】根據(jù)導(dǎo)數(shù)求出函數(shù)在區(qū)間上單調(diào)性,然后判斷零點區(qū)間.【題目詳解】解:根據(jù)題意可知3x和-log2∴f(x)在(0,+∞而f(1)=3-0=3>0f(2)=f(3)=1-∴有函數(shù)的零點定理可知,fx零點的區(qū)間為(2故選:C8、A【解題分析】由一次函數(shù)的圖像判斷出a、b的符號,結(jié)合指數(shù)函數(shù)的圖像一一進行判斷可得答案.【題目詳解】解:A項,由一次函數(shù)的圖像可知此時函數(shù)為減函數(shù),故A項正確;B項,由一次函數(shù)的圖像可知此時函數(shù)為增函數(shù),故B項錯誤;C項,由一次函數(shù)的圖像可知,此時函數(shù)為的直線,故C項錯誤;D項,由一次函數(shù)的圖像可知,,此時函數(shù)為增函數(shù),故D項錯誤;故選A.【題目點撥】本題主要考查指數(shù)函數(shù)的圖像特征,相對簡單,由直線得出a、b的范圍對指數(shù)函數(shù)進行判斷是解題的關(guān)鍵.9、D【解題分析】根據(jù)向量的運算性質(zhì)展開可得,再代入向量的數(shù)量積公式即可得解.【題目詳解】根據(jù)向量運算性質(zhì),,故選:D10、B【解題分析】當時,即可得到答案.【題目詳解】由題意可得當時故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】根據(jù)三角函數(shù)性質(zhì),列方程求出,得到,進而得到,利用換元法,即可求出的值域【題目詳解】根據(jù)三角函數(shù)性質(zhì),的最大值為,最小值為,解得,則函數(shù),則函數(shù),,令,則,令,由得,,所以,的值域為故答案為:【題目點撥】關(guān)鍵點睛:解題關(guān)鍵在于求出后,利用換元法得出,,進而求出的范圍,即可求出所求函數(shù)的值域,難度屬于中檔題12、①②④【解題分析】①連接,在正方體中,平面,所以平面平面,所以①是真命題;②連接MN,因為平面,所以,四邊形MENF的對角線EF是定值,要使四邊形MENF面積最小,只需MN的長最小即可,當M為棱的中點時,即當且僅當時,四邊形MENF的面積最??;③因為,所以四邊形是菱形,當時,的長度由大變小,當時,的長度由小變大,所以周長,是單調(diào)函數(shù),是假命題;④連接,把四棱錐分割成兩個小三棱錐,它們以為底,為頂點,因為三角形的面積是個常數(shù),到平面的距離也是一個常數(shù),所以四棱錐的體積為常函數(shù);命題中真命題的序號為①②④考點:面面垂直及幾何體體積公式13、1【解題分析】由已知結(jié)合兩角和的正切求解【題目詳解】由,可知tan(α+β)=1,得,即tanα+tanβ=,∴故答案為1【題目點撥】本題考查兩角和的正切公式的應(yīng)用,是基礎(chǔ)的計算題14、2【解題分析】證明平面得到,故與以為直徑的圓相切,計算半徑得到答案.詳解】PA⊥平面ABCD,平面ABCD,故,PQ⊥QD,,故平面,平面,故,在BC上只有一個點Q滿足PQ⊥QD,即與以為直徑的圓相切,,故間的距離為半徑,即為1,故.故答案為:215、120【解題分析】利用扇形的面積公式求解.【題目詳解】由題意得:扇形弧長為30,半徑為8,所以扇形的面積為:,故答案為:12016、2【解題分析】將齊次式弦化切即可求解.【題目詳解】解:因為,所以,故答案為:2.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】分析:(1)直接利用三角函數(shù)的坐標定義求的值.(2)先求的值,再求的值.詳解:(1)由題得(2)∵在第一象限,∴∴點睛:(1)本題主要考查三角函數(shù)坐標定義和同角的三角函數(shù)關(guān)系,意在考查學(xué)生對這些基礎(chǔ)知識的掌握水平和基本的運算能力.(2)點p(x,y)是角終邊上的任意的一點(原點除外),r代表點到原點的距離,則sin=cos=tan=.18、(1)的不動點為和;(2)①,②證明見解析.【解題分析】(1)當時,函數(shù),令,即可求解;(2)①由題意,得到的兩個實數(shù)根為,,設(shè),根據(jù)二次函數(shù)的圖象與性質(zhì),列出不等式即可求解;②把可化為,設(shè)的兩個實數(shù)根為,,根據(jù)是方程的實數(shù)根,得出,結(jié)合函數(shù)單調(diào)性,即可求解.【題目詳解】(1)當時,函數(shù),方程可化為,解得或,所以的不動點為和(2)①因為函數(shù)有兩個不動點,,所以方程,即的兩個實數(shù)根為,,記,則的零點為和,因為,所以,即,解得.所以實數(shù)的取值范圍為②因為方程可化為,即因為,,所以有兩個不相等的實數(shù)根設(shè)的兩個實數(shù)根為,,不妨設(shè)因為函數(shù)圖象的對稱軸為直線,且,,,所以記,因為,且,所以是方程的實數(shù)根,所以1是的一個不動點,,因為,所以,,且的圖象在上的圖象是不間斷曲線,所以,使得,又因為在上單調(diào)遞增,所以,所以是的一個不動點,綜上,在上至少有兩個不動點【題目點撥】利用函數(shù)的圖象求解方程的根的個數(shù)或研究不等式問題的策略:1、利用函數(shù)的圖象研究方程的根的個數(shù):當方程與基本性質(zhì)有關(guān)時,可以通過函數(shù)圖象來研究方程的根,方程的根就是函數(shù)與軸的交點的橫坐標,方程的根據(jù)就是函數(shù)和圖象的交點的橫坐標;2、利用函數(shù)研究不等式:當不等式問題不能用代數(shù)法求解但其與函數(shù)有關(guān)時,常將不等式問題轉(zhuǎn)化為兩函數(shù)圖象的上、下關(guān)系問題,從而利用數(shù)形結(jié)合求解.19、(1)見解析;(2)【解題分析】(1)推導(dǎo)出DN⊥CM,CM⊥FN,由此能證明CM⊥平面DFN.(2)以M為原點,MN為x軸,MA為y軸,ME為z軸,建立空間直角坐標系,利用向量法能求出點C到平面FDM的距離【題目詳解】證明:(1)∵長方形ABCD,AD=2CD=4,M、N分別為AD、BC的中點,將長方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD因為長方形ABCD,DC=CN=2,所以四邊形DCNM是正方形,∴DN⊥CM,因為平面MNFE⊥平面ABCD,F(xiàn)N⊥MN,MNFE∩平面ABCD=MN,所以FN⊥平面DCNM,因為CM平面DCNM,所以CM⊥FN,又DN∩FN=N,∴CM⊥平面DFN(2)以M為原點,MN為x軸,MA為y軸,ME為z軸,建立空間直角坐標系,則C(2,-2,0),D(0,-2,0),F(xiàn)(2,0,2),M(0,0,0),=(2,-2,0),=(0,-2,0),=(2,0,2),設(shè)平面FDM的法向量=(x,y,z),則,取x=1,得=(1,0,-1),∴點C到平面FDM的距離d===【題目點撥】本題考查線面垂直的證明,考查點到平面的距離的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,是中檔題20、(1),(2),【解題分析】(1)利用余弦函數(shù)的增減性列不等式可得答案;(2)先討論

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論