版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆黑龍江省哈爾濱市松北區(qū)數(shù)學(xué)八上期末達(dá)標(biāo)檢測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.“趙爽弦圖”是四個(gè)全等的直角三角形與中間一個(gè)小正方形拼成的大正方形,如圖,每一個(gè)直角三角形的兩條直角的長(zhǎng)分別是3和4,則中間的小正方形和大正方形的面積比是()A.3:4 B.1:25 C.1:5 D.1:102.下列各圖中a、b、c為三角形的邊長(zhǎng),則甲、乙、丙三個(gè)三角形和左側(cè)△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙3.人字梯中間一般會(huì)設(shè)計(jì)一“拉桿”,這樣做的道理是()A.兩點(diǎn)之間,線段最短 B.垂線段最短C.兩直線平行,內(nèi)錯(cuò)角相等 D.三角形具有穩(wěn)定性4.下列分解因式正確的是()A. B.C. D.5.已知的三邊長(zhǎng)為滿足條件,則的形狀為()A.等腰三角形 B.等腰直角三角形C.等邊三角形 D.等腰三角形或直角三角形6.以下列各組線段的長(zhǎng)為邊,能組成三角形的是()A.2、4、7 B.3、5、2 C.7、7、3 D.9、5、37.小數(shù)0.0…0314用科學(xué)記數(shù)法表示為,則原數(shù)中小數(shù)點(diǎn)后“0”的個(gè)數(shù)為()A.4 B.6 C.7 D.88.下列圖形中,由∠1=∠2,能得到AB∥CD的是()A. B.C. D.9.當(dāng)x=()時(shí),互為相反數(shù).A. B. C. D.10.分式的值為,則的值為()A. B. C. D.無法確定11.如圖,△ABC中,∠B=55°,∠C=63°,DE∥AB,則∠DEC等于()A.63° B.113° C.55° D.62°12.若(x2-x+m)(x-8)中不含x的一次項(xiàng),則m的值為()A.8 B.-8 C.0 D.8或-8二、填空題(每題4分,共24分)13.如圖,中,厘米,厘米,點(diǎn)為的中點(diǎn),如果點(diǎn)在線段上以厘米/秒的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng).若點(diǎn)的運(yùn)動(dòng)速度為厘米/秒,則當(dāng)與全等時(shí),的值為__________.14.如圖,AC是正五邊形ABCDE的一條對(duì)角線,則∠ACB=_____.15.如圖,已知CA=BD判定△ABD≌△DCA時(shí),還需添加的條件是__________.16.如圖,把△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△A'B'C',此時(shí)A′B′⊥AC于D,已知∠A=50°,則∠B′CB的度數(shù)是_____°.17.如圖,點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B在直線y=x上運(yùn)動(dòng),當(dāng)線段AB最短時(shí),點(diǎn)B的坐標(biāo)為__.18.在等腰△ABC中,AB=AC,∠BAC=20°,點(diǎn)D在直線BC上,且CD=AC,連接AD,則∠ADC的度數(shù)為_____.三、解答題(共78分)19.(8分)某校初二數(shù)學(xué)興趣小組活動(dòng)時(shí),碰到這樣一道題:“已知正方形,點(diǎn)分別在邊上,若,則”.經(jīng)過思考,大家給出了以下兩個(gè)方案:(甲)過點(diǎn)作交于點(diǎn),過點(diǎn)作交于點(diǎn);(乙)過點(diǎn)作交于點(diǎn),作交的延長(zhǎng)線于點(diǎn);同學(xué)們順利地解決了該題后,大家琢磨著想改變問題的條件,作更多的探索.(1)對(duì)小杰遇到的問題,請(qǐng)?jiān)诩?、乙兩個(gè)方案中任選一個(gè),加以證明(如圖1);圖1圖2(2)如果把條件中的“”改為“與的夾角為”,并假設(shè)正方形的邊長(zhǎng)為l,的長(zhǎng)為(如圖2),試求的長(zhǎng)度.20.(8分)我們提供如下定理:在直角三角形中,30°的銳角所對(duì)的直角邊是斜邊的一半,如圖(1),Rt△ABC中,∠C=90°,∠A=30°,則BC=AB.請(qǐng)利用以上定理及有關(guān)知識(shí),解決下列問題:如圖(2),邊長(zhǎng)為6的等邊三角形ABC中,點(diǎn)D從A出發(fā),沿射線AB方向有A向B運(yùn)動(dòng)點(diǎn)F同時(shí)從C出發(fā),以相同的速度沿著射線BC方向運(yùn)動(dòng),過點(diǎn)D作DE⊥AC,DF交射線AC于點(diǎn)G.(1)當(dāng)點(diǎn)D運(yùn)動(dòng)到AB的中點(diǎn)時(shí),直接寫出AE的長(zhǎng);(2)當(dāng)DF⊥AB時(shí),求AD的長(zhǎng)及△BDF的面積;(3)小明通過測(cè)量發(fā)現(xiàn),當(dāng)點(diǎn)D在線段AB上時(shí),EG的長(zhǎng)始終等于AC的一半,他想當(dāng)點(diǎn)D運(yùn)動(dòng)到圖3的情況時(shí),EG的長(zhǎng)始終等于AC的一半嗎?若改變,說明理由;若不變,說明理由.21.(8分)如圖,AD
為
△ABC
的角平分線,DE⊥AB
于點(diǎn)
E,DF⊥AC
于點(diǎn)
F,連接
EF
交
AD
于點(diǎn)
O.(1)求證:AD垂直平分EF;(2)若∠BAC=,寫出DO與AD之間的數(shù)量關(guān)系,不需證明.22.(10分)在如圖所示的平面直角坐標(biāo)系中,網(wǎng)格小正方形的邊長(zhǎng)為1.(1)作出關(guān)于軸對(duì)稱的,并寫出點(diǎn)的坐標(biāo);(2)是軸上的動(dòng)點(diǎn),利用直尺在圖中找出使周長(zhǎng)最短時(shí)的點(diǎn),保留作圖痕跡,此時(shí)點(diǎn)的坐標(biāo)是______23.(10分)已知:如圖,四邊形ABDC,AB=4,AC=3,CD=12,BD=13,∠BAC=90°.求四邊形ABDC的面積.24.(10分)在中,,,、分別是的高和角平分線.求的度數(shù).25.(12分)如圖,在每個(gè)小正方形的邊長(zhǎng)均為1的方格紙中有線段AB,其中點(diǎn)A、B均在小正方形的頂點(diǎn)上.(1)在方格紙中畫出以BC為底的鈍角等腰三角形ABC,且點(diǎn)C在小正方形的頂點(diǎn)上;(2)將(1)中的△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△DEC(點(diǎn)A的對(duì)應(yīng)點(diǎn)是點(diǎn)D,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)E),畫出△CDE;(3)在(2)的條件下,連接BE,請(qǐng)直接寫出△BCE的面積.26.如圖,是等邊三角形,、、分別是、、上一點(diǎn),且.(1)若,求;(2)如圖2,連接,若,求證:.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)勾股定理求得大正方形的邊長(zhǎng),然后由正方形的面積公式求得其面積;根據(jù)線段間的和差關(guān)系求得小正方形的邊長(zhǎng),然后由正方形的面積公式求得其面積.【題目詳解】由勾股定理得:大正方形的邊長(zhǎng),則大正方形的面積=52=25;
小正方形的邊長(zhǎng)為:4-3=1,則其面積為:12=1.
∴小正方形和大正方形的面積比是.故選:B.【題目點(diǎn)撥】本題考查了以弦圖為背景的計(jì)算題.本題是用數(shù)形結(jié)合來證明勾股定理,鍛煉了同學(xué)們的數(shù)形結(jié)合的思想方法.2、B【解題分析】分析:根據(jù)三角形全等的判定方法得出乙和丙與△ABC全等,甲與△ABC不全等.詳解:乙和△ABC全等;理由如下:在△ABC和圖乙的三角形中,滿足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和圖丙的三角形中,滿足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲與△ABC全等;故選B.點(diǎn)睛:本題考查了三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.3、D【分析】根據(jù)三角形的穩(wěn)定性解答即可.【題目詳解】解:人字梯中間一般會(huì)設(shè)計(jì)一“拉桿”,是為了形成三角形,利用三角形具有穩(wěn)定性來增加其穩(wěn)定性,故選D.【題目點(diǎn)撥】此題考查三角形的性質(zhì),關(guān)鍵是根據(jù)三角形的穩(wěn)定性解答.4、C【分析】根據(jù)因式分解定義逐項(xiàng)分析即可;【題目詳解】A.等式兩邊不成立,故錯(cuò)誤;B.原式=,故錯(cuò)誤;C.正確;D.原式=,故錯(cuò)誤;故答案選C.【題目點(diǎn)撥】本題主要考查了因式分解的判斷,準(zhǔn)確應(yīng)用公式是解題的關(guān)鍵.5、D【分析】把所給的等式能進(jìn)行因式分解的要因式分解,整理為非負(fù)數(shù)相加得0的形式,求出三角形三邊的關(guān)系,進(jìn)而判斷三角形的形狀.【題目詳解】由,得因?yàn)橐阎娜呴L(zhǎng)為所以所以=0,或,即,或所以的形狀為等腰三角形或直角三角形故選:D【題目點(diǎn)撥】本題考查了分組分解法分解因式,利用因式分解最后整理成多項(xiàng)式的乘積等于0的形式是解題的關(guān)鍵.6、C【分析】根據(jù)在三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.即可求解.【題目詳解】解:根據(jù)三角形任意兩邊的和大于第三邊,可知
A、2+4<7,不能夠組成三角形,故A錯(cuò)誤;
B、2+3=5,不能組成三角形,故B錯(cuò)誤;
C、7+3>7,能組成三角形,故C正確;
D、3+5<9,不能組成三角形,故D錯(cuò)誤;
故選:C.【題目點(diǎn)撥】本題考查了能夠組成三角形三邊的條件,熟練掌握構(gòu)成三角形的條件是解題的關(guān)鍵.7、C【分析】科學(xué)記數(shù)法的標(biāo)準(zhǔn)形式為a×10n(1≤|a|<10,n為整數(shù)).本題數(shù)據(jù)“”中的a=3.14,指數(shù)n等于?8,所以,需要把3.14的小數(shù)點(diǎn)向左移動(dòng)8位,就得到原數(shù),即可求解.【題目詳解】解:3.14×10?8=0.1.原數(shù)中小數(shù)點(diǎn)后“0”的個(gè)數(shù)為7,故答案為:C.【題目點(diǎn)撥】本題考查寫出用科學(xué)記數(shù)法表示的原數(shù).將科學(xué)記數(shù)法a×10n表示的數(shù),“還原”成通常表示的數(shù),當(dāng)n>0時(shí),就是把a(bǔ)的小數(shù)點(diǎn)向右移動(dòng)n位所得到的數(shù),當(dāng)n<0時(shí),就是把a(bǔ)的小數(shù)點(diǎn)向左移動(dòng)位所得到的數(shù).8、C【分析】根據(jù)平行線的判定定理對(duì)各選項(xiàng)進(jìn)行逐一判斷即可.【題目詳解】A、由∠1+∠2=180°,得到AB∥CD,故本選項(xiàng)錯(cuò)誤;B、∠1=∠2不能判定AB∥CD,故本選項(xiàng)錯(cuò)誤;C、由∠1=∠2,得AB∥CD,符合平行線的判定定理,故本選項(xiàng)正確;D、∠1=∠2不能判定AB∥CD,故本選項(xiàng)錯(cuò)誤.故選:C.【題目點(diǎn)撥】本題主要主要考查平行線的判定定理,掌握“同位角相等,兩直線平行”,“內(nèi)錯(cuò)角相等,兩直線平行”,“同旁內(nèi)角互補(bǔ),兩直線平行”是解題的關(guān)鍵.9、B【分析】根據(jù)相反數(shù)的定義列出方程求解即可.【題目詳解】由題意得:解得經(jīng)檢驗(yàn),是原分式方程的解.故選B.【題目點(diǎn)撥】本題目是一道考查相反數(shù)定義問題,根據(jù)相反數(shù)的性質(zhì):互為相反數(shù)的兩個(gè)數(shù)相加得0.從而列方程,解方程即可.10、B【解題分析】根據(jù)分式的值等于1時(shí),分子等于1且分母不為1,即可解出的值.【題目詳解】解:分式的值為1,且.故選:B.【題目點(diǎn)撥】本題是已知分式的值求未知數(shù)的值,這里注意到分式有意義,分母不為1.11、D【分析】由ABDE,可知∠DEC=∠A,利用三角形內(nèi)角和定理求出∠A即可.【題目詳解】解:∵ABDE,
∴∠DEC=∠A,
∵∠A=180°-∠B-∠C=180°-55°-63°=62°,
∴∠DEC=62°
故選:D.【題目點(diǎn)撥】本題考查三角形內(nèi)角和定理,平行線的性質(zhì)等知識(shí),熟練掌握基本知識(shí)是解題的關(guān)鍵.12、B【解題分析】(x2-x+m)(x-8)=由于不含一次項(xiàng),m+8=0,得m=-8.二、填空題(每題4分,共24分)13、2.25或3【分析】已知∠B=∠C,根據(jù)全等三角形的性質(zhì)得出BD=PC,或BP=PC,進(jìn)而算出時(shí)間t,再算出y即可.【題目詳解】解:設(shè)經(jīng)過t秒后,△BPD與△CQP全等,∵AB=AC=12厘米,點(diǎn)D為AB的中點(diǎn),∴BD=6厘米,∵∠B=∠C,BP=yt,CQ=3t,
∴要使△BPD和△CQP全等,則當(dāng)△BPD≌△CQP時(shí),BD=CP=6厘米,∴BP=3,
∴t=3÷3=1(秒),
y=3÷1=3(厘米/秒),
當(dāng)△BPD≌△CPQ,∴BP=PC,BD=QC=6,∴t=6÷3=2(秒),
∵BC=9cm,
∴PB=4.5cm,
y=4.5÷2=2.25(厘米/秒).故答案為:2.25或3.【題目點(diǎn)撥】本題考查了等腰三角形的性質(zhì)和全等三角形的性質(zhì),注意:全等三角形的對(duì)應(yīng)邊相等.14、36°【分析】由正五邊形的性質(zhì)得出∠B=108°,AB=CB,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)果.【題目詳解】∵五邊形ABCDE是正五邊形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案為36°.15、AB=CD【分析】條件是AB=CD,理由是根據(jù)全等三角形的判定定理SSS即可推出△ABD≌△DCA.【題目詳解】解:已知CA=BD,AD=AD∴要使△ABD≌△DCA則AB=CD即可利用SSS推出△ABD≌△DCA故答案為AB=CD.【題目點(diǎn)撥】本題主要考查對(duì)全等三角形的判定定理的理解和掌握,掌握三角形的判定定理是解題的關(guān)鍵.16、1【分析】由旋轉(zhuǎn)的性質(zhì)可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性質(zhì)可求∠ACA'=1°=∠B′CB.【題目詳解】解:∵把△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案為1.【題目點(diǎn)撥】本題考查了旋轉(zhuǎn)的性質(zhì),熟練運(yùn)用旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.17、(-,-)【解題分析】試題解析:先過點(diǎn)A作AB′⊥OB,垂足為點(diǎn)B′,由垂線段最短可知,當(dāng)B′與點(diǎn)B重合時(shí)AB最短,∵點(diǎn)B在直線y=x上運(yùn)動(dòng),∴△AOB′是等腰直角三角形,過B′作B′C⊥x軸,垂足為C,∴△B′CO為等腰直角三角形,∵點(diǎn)A的坐標(biāo)為(﹣1,0),∴OC=CB′=OA=×1=,∴B′坐標(biāo)為(﹣,﹣),即當(dāng)線段AB最短時(shí),點(diǎn)B的坐標(biāo)為(﹣,﹣).考點(diǎn):一次函數(shù)綜合題.18、50°或40°【分析】利用等腰三角形的性質(zhì),等邊對(duì)等角即可得.【題目詳解】解:①當(dāng)點(diǎn)D在CB的延長(zhǎng)線上時(shí),∵AB=AC,∠BAC=20°,∴∠ABC=∠ACB=80°.∵CA=CD,∠ACB=80°,∴∠ADC=∠CAD=50°,②當(dāng)點(diǎn)D在BC的延長(zhǎng)線上時(shí),∵AB=AC,∠BAC=20°,∴∠ABC=∠ACB=80°.∵CA=CD,∠ACB=80°,∠ACB=∠D+∠CAD,∴,∴∠BDA的度數(shù)為50°或40°.故答案為:50°或40°.【題目點(diǎn)撥】掌握等腰三角形的性質(zhì)為本題的關(guān)鍵.三、解答題(共78分)19、(1)見解析;(2).【分析】(1)選乙,過點(diǎn)作交于點(diǎn),作交的延長(zhǎng)線于點(diǎn),通過證△AMB≌△ADN來得出結(jié)論;(2)按(1)的思路也要通過構(gòu)建全等三角形來求解,可過點(diǎn)A作AM∥HF交BC于點(diǎn)M,過點(diǎn)A作AN∥EG交CD于點(diǎn)N,將△AND繞點(diǎn)A旋轉(zhuǎn)到△APB,不難得出△APM和△ANM全等,那么可得出PM=MN,而MB的長(zhǎng)可在直角三角形ABM中根據(jù)AB和AM(即HF的長(zhǎng))求出.如果設(shè)DN=x,那么NM=PM=BM+x,MC=BC?BM=1?BM,因此可在直角三角形MNC中用勾股定理求出DN的長(zhǎng),進(jìn)而可在直角三角形AND中求出AN即EG的長(zhǎng).【題目詳解】(1)證明:過點(diǎn)作交于點(diǎn),作交的延長(zhǎng)線于點(diǎn)∴,,∵正方形∴,,∵∴∴在和中,∴∴即.(2)解:過點(diǎn)作交于點(diǎn),過點(diǎn)作交于點(diǎn),∵,,∴在中,,將繞點(diǎn)旋轉(zhuǎn)到,∵與的夾角為∴∴,即從而∴設(shè),則,,在中,,解得:∴.【題目點(diǎn)撥】本題主要考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì)、圖形的旋轉(zhuǎn)變換等知識(shí).通過輔助線或圖形的旋轉(zhuǎn)將所求的線段與已知的線段構(gòu)建到一對(duì)全等三角形中是本題的基本思路.20、(1)AE=;(2)AD=2,S△BDF=8;(3)不變,理由見解析【分析】(1)根據(jù)D為AB的中點(diǎn),求出AD的長(zhǎng),在Rt△ADE中,利用30°所對(duì)的直角邊等于斜邊的一半求出AE的長(zhǎng)即可;(2)根據(jù)題意得到設(shè)AD=CF=x,表示出BD與BF,在Rt△BDF中,利用30°所對(duì)的直角邊等于斜邊的一半得到BF=2BD,列出關(guān)于x的方程,求出方程的解得到x的值,確定出BD與BF的長(zhǎng),利用勾股定理求出DF的長(zhǎng),即可確定出△BDF的面積;(3)不變,理由如下,如圖,過F作FM⊥AG延長(zhǎng)線于M,由AD=CF,且△ABC為等邊三角形,利用等邊三角形的性質(zhì)及銳角三角函數(shù)定義得到DE=FM,以及AE=CM,利用AAS得到△DEG與△FMC全等,利用全等三角形對(duì)應(yīng)邊相等得到EG=MG,根據(jù)AC=AE+EC,等量代換即可得證.【題目詳解】解:(1)當(dāng)D為AB中點(diǎn)時(shí),AD=BD=AB=3,在Rt△ADE中,∠A=60°,∴∠ADE=30°,∴AE=AD=;(2)設(shè)AD=x,∴CF=x,則BD=6-x,BF=6+x,∵∠B=60°,∠BDF=90°,∴∠F=30°,即BF=2BD,∴6+x=2×(6-x),解得:x=2,即AD=2,∴BD=4,BF=8,根據(jù)勾股定理得:DF=4,∴S△BDF=×4×4=8;(3)不變,理由如下,如圖,過F作FM⊥AG延長(zhǎng)線于M,∵△ABC為等邊三角形,∴∠A=∠ACB=∠FCM=60°,在Rt△ADE和Rt△FCM中,∴Rt△ADE≌Rt△FCM,∴DE=FM,AE=CM,在△DEG和△FMG,,∴△DEG≌△FMG,∴GE=GM,∴AC=AE+EC=CM+CE=GE+GM=2GE.【題目點(diǎn)撥】此題考查了全等三角形的判定與性質(zhì),等邊三角形的性質(zhì),以及含30°直角三角形的性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.21、(1)見解析;(2)【解題分析】試題分析:(1)由AD為△ABC的角平分線,得到DE=DF,推出∠AEF和∠AFE相等,得到AE=AF,即可推出結(jié)論;(2)由已知推出∠EAD=30°,得到AD=2DE,在△DEO中,由∠DEO=30°推出DE=2DO,即可推出結(jié)論.試題解析:(1)∵AD為△ABC的角平分線,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,∴∠DEF=∠DFE,∴∠AEF=∠AFE,∴AE=AF,∴點(diǎn)A、D都在EF的垂直平分線上,∴AD垂直平分EF.(2),理由:∵∠BAC=60°,AD平分∠BAC,∴∠EAD=30°,∴AD=2DE,∠EDA=60°,∵AD⊥EF,∴∠EOD=90°,∴∠DEO=30°∴DE=2DO,∴AD=4DO,∴.【題目點(diǎn)撥】本題主要考查了角平分線的性質(zhì),線段垂直平分線的性質(zhì),含30°角的直角三角形的性質(zhì)等知識(shí)點(diǎn),解此題的關(guān)鍵是(1)證AE=AF和DE=DF;(2)證AD=2DE和DE=2DO.22、(1)見解析,;(2)見解析,【分析】(1)分別作出點(diǎn)A,B,C關(guān)于軸的對(duì)應(yīng)點(diǎn)A′,B′,C′,再順次連接即可.
(2)作點(diǎn)A′關(guān)于x軸的對(duì)稱點(diǎn)A″,連接BA″交x軸于P,點(diǎn)P即為所求.【題目詳解】解:(1)如圖所示,即為所求,點(diǎn);(2)如圖所示,點(diǎn)即為所求.【題目點(diǎn)撥】本題考查作圖?軸對(duì)稱變換,軸對(duì)稱?最短問題等知識(shí),熟知關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn)是解答此題的關(guān)鍵.23、1.【分析】連接BC,利用勾股定理求出BC,再利用勾股定理的逆定理證出△BCD是直角三角形,得到四邊形的面積就等于兩個(gè)直角三角形的面積之和.【題目詳解】連接BC.∵∠A=90°,AB=4,AC=3,∴BC=2.∵BC=2,BD=13,CD=12,∴BC2+CD2=BD2,∴△BCD是直角三角形,∴S四邊形ABCD=S△BCD+S△ABC=×4×3+×2×12=1.【題目點(diǎn)撥】此題考查的是勾股定理及勾股定理的逆定理,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 放射治療核醫(yī)學(xué)衛(wèi)生監(jiān)督
- 關(guān)于新學(xué)期新計(jì)劃模板集合十篇
- 煙草業(yè)防水防腐施工合同
- 媒體行業(yè)電力使用規(guī)范
- 機(jī)械制造穩(wěn)定性條例
- 游泳池食堂員工聘用協(xié)議
- 賽車場(chǎng)周邊道路工程合同
- 建筑公司退休項(xiàng)目經(jīng)理返聘合同
- 油漆原料儲(chǔ)罐長(zhǎng)期租賃協(xié)議
- 藥店藥品管理員聘用協(xié)議
- 建筑公司組織架構(gòu)及崗位職責(zé)
- COPD診療新進(jìn)展
- 先進(jìn)先出法與后進(jìn)先出法ppt課件
- 精品資料(2021-2022年收藏的)病案管理制度全套
- 低壓工作票(共3頁)
- 2閥門結(jié)構(gòu)和工作原理(上)
- 基礎(chǔ)圖案設(shè)計(jì)(課堂PPT)
- 食堂操作工藝流程圖
- 玉米栽培品比試驗(yàn)-文檔
- 幼兒園參觀學(xué)?;顒?dòng)方案5篇
- 關(guān)于旅游景區(qū)游客滿意度研究的文獻(xiàn)綜述
評(píng)論
0/150
提交評(píng)論